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where §; denotes the roundoff error associated with «;. Using methods similar to those in
the proot of Theorem 5.9, we can produce an error bound for the finite-digit approximations

to y; given by Euler’s method.

Theorem 5.10 Let y(z) denote the unique solution to the initial-value problem

Y =f@t,y), a<t=<b y@a)=«ca (5.12)
and ug, uy, ... , uy be the approximations obtained using (5.'1 1). If |8;| < é foreachi =
0,1,..., N and the hypotheses of Theorem 5.9 hold for (5.12), then

1 /M 6 L (6 —a) L
B) —uil < — | — + - =) — 1] + |8ole" Vi), 5.13
|y (%) uI_L(2+h)[e 1+ [dole (3.13)
foreachi =0,1,...,N. u

The error bound (5.13) is no longer linear in A. In fact, since

11 hM+3 = 00
e S D) h)

the error would be expected to become large for sufficiently small values of 4. Calculus can
be used to determine a lower bound for the step size k. Letting E(h) = (hM/2) + (5/h)

implies that E'(h) = (M/2) — (8/ h?).
If h<+25/M, then E’(h) < 0and E(h) is decreasing.

If h>./25/M, then E’(h) > 0and E(h) is increasing.
The minimal value of E(h) occurs when

he |2 (5.14)

M

Decreasing s beyond this value tends to increase the total error in the approximation. Nor-
mally, however, the value of § is sufficiently small that this lower bound for # does not

affect the operation of Euler’s method.

EXERCISE SET 5.2

1. Use Euler’s method to approximate the solutions for each of the following initial-value prob-
lems.
a. Yy =te¥ -2y, 0<t<l1, y0 =0, withh =0.5
b. y=1+@¢-y?% 2<t<3, yQ2=1, withh=0.5
¢. yY=I1+y/t, 1<t<2, y(l)=2 witha =025
d. y =cos2t+sm3t, 0<t<1l y0) =1, withh =0.25

2. The actual solutions to the initial-value problems in Exercise 1 are given here. Compare the
actual error at each step to the error bound.
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1 3¢ I 3r 1 -2¢ 1
a. t :—t T — — b- t =t -
y(t) Ste 53¢ +25e y(2) +1—t
1 . 1 4
¢. y(i)=tlnt+ 2t d. y(t)=-2—sm2t—§cos3t+§

Use Euler’s method to approximate the solutions for each of the following initial-value prob-
lems.

a. Yy =y/t—(@/t), 1=1<
b. Yy =14+y/t+@/t)*, 1<
c¢. V=—-(O+DH+3), 0<t<2, y0)=-2, withh=0.2

d. Yy =-5y+5*+2, 0<r<1, y0) =3, withh=0.1

The actual solutions to the initial-value problems in Exercise 3 are given here. Compute the
actual error 1n the approximations of Exercise 3.

2, y(1)=1, withh = 0.1
t<3, y(1)=0, withh =02

=
=

a. y@)= TS ins b. y(t) =ttan(lnt)
2 2 l —51
c. y({t)=-3+4 g d y@) ="+ ge

Given the 1nitial-value problem

2
y = ;y-!—tze’, 1<t<2, y1)=0,

with exact solution y(¢) = t?(e’ — e) :
a. Use Euler’s method with 2 = 0.1 to approximate the solution, and compare it with the
actual values of y.

b. Use the answers generated in part (a) and linear interpolation to approximate the follow-
ing values of y, and compare them to the actual values.

i. y(1.04) il. y(1.55) im. y(1.97)
¢. Compute the value of & necessary for |y(¢;) — w;| < 0.1, using Eq. (5.10).

Given the 1initial-value problem
y'f:_"‘__}’s 15:52, }’(1)=“ls

with exact solution y(¢) = —1/t:
a. Use Euler’s method with & = 0.05 to approximate the solution, and compare it with the

actual values of y.

b. Use the answers generated in part (a) and linear interpolation to approximate the follow-
ing values of y, and compare them to the actual values,

i. y(1.052) ii. y(1.555) ii.  y(1.978)
¢. Compute the value of s necessary tor |y(f;) — w;| < 0.05 using eq. (5.10).
Given the initial-value problem

y=—-y+t+1, 0<t<5 y0) =1,

with exact solution y(¢) = e~ + ¢:
a. Approximate y(5) using Euler’s method with 2 = 0.2, A = 0.1, and & = 0.05.

b. Determine the optimal value of % to use in computing y(5), assuming & = 10~¢ and that
Eq. (5.14) 1s valid. |
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10,

11.

12.

Use the results of Exercise 3 and linear interpolation to approximate the following values of
y(t). Compare the approximations obtained to the actual values obtained using the functions

given 1n Exercise 4.

&  y(1.25) and y(1.93) b. y(2.1)and y(2.75)
¢. y(1.4)and y(1.93) d. v(0.54) and y(0.94)
Let E(h) = é—ﬁi + —5—

2 h

a. For the initial-value problem
y==y+1, 0=<t=<1, y@©0) =0,

compute the value of & to minimize E (). Assume § == 5 x 10~"* if you will be using
n-digit arithmetic in part (c¢).

b. For the optimal » computed in part (a), use Eq. (5.13) to compute the minimal error
obtainable.

c. Compare the actual error obtained using 2 = 0.1 and # = 0.01 to the minimal error in
part (b). Can you explain the results?

Consider the initial-value problem
y=-=10y, 0<t<2, y(0)=1,

which has solution y(¢) = e¢~'". What happens when Euler's method is applied to this problem
with 2 = (.17 Does this behavior violate Theorem 5.9?

In a book entitied Looking at History Through Mathematics, Rashevsky [Ra, pp. 103-110]
considers a model for a problem involving the production of nonconformists in society. Sup-
pose that a society has a population of x(¢) individuals at time z, in years, and that all non-
conformists who mate with other nonconformists have offspring who are also nonconformists,
while a fixed proportion r of all other offspring are also nonconformist. If the birth and death
rates for all individuals are assumed to be the constants b and d, respectively, and if con-
formists and nonconformists mate at random, the problem can be expressed by the differential

equations

dx(t) dxp(t)
= (b —d)x(t) and .7

= (b —d)x,(t) + rb(x(t) — x,(1)),

where x,(¢) denotes the number of nonconformists in the population at time ¢.

a. Suppose the variable p(r) = x,(¢)/x(¢) is introduced to represent the proportion of non-
conformists in the society at time z. Show that these equations can be combined and
simplified to the single differential equation

PO _ p1— pery).

dt
b. Assuming that p(0) = 0.01,5 = 0.02,d = 0.015, andr = 0.1, approximate the solution
p(t) from ¢t = 0 to ¢ = 50 when the step size is & = 1 year.
¢.  Solve the differential equation for p(¢) exactly, and compare your result in part (b) when
t = 50 with the exact value at that time.
In a circuit with impressed voltage & having resistance R, inductance L, and capacitance C in
paralle], the current i satisfies the differential equation

di d*€ 1d& 1

—_ = — 4+ — —
dt dr? Rdr+L
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Suppose C = 0.3 farads, R = 1.4 ohms, L = 1.7 henries, and the voltage is given by
g(t) = e % sin(2t — m).

If i(0) = 0, find the current { for the valuest = 0.1, where j =0, 1, ..., 100.

o
5.3 Higher-Order Taylor Methods

Definition 5.11

Since the object of numerical techniques is to determine accurate approximations with
minimal effort, we need a means for comparing the efficiency of various approximation
methods. The first device we consider is called the local truncation error of the method.
The local truncation error at a specified step measures the amount by which the exact
solution to the differential equation fails to satisfy the difference equation being used for

the approximation.

The difference method

Wo =«

wiy] = w; + he(t;, w;), foreachi=0,1,... N -1,

has local truncation error

Vie1 — O + ho (4, ¥i)) )’f+i — Y
h " h

foreachi =0,1,... ,N - 1. n

t;i+1(h) = ¢, i),

For Euler’s method, the local truncation error at the ith step for the problem
y = f@t,y), a<t<b, y()=u«,
is

ziat(h) = y"*‘h" Yo _ f(t,y;), foreachi=0,1,... ,N—1,
where, as usual, y; = y(&;) denotes the exact value of the solution at #;. This error 1s a local
error because it measures the accuracy of the method at a specific step, assuming that the
method was exact at the previous step. As such, it depends on the differential equation, the

step size, and the particular step in the approximation.
By considering Eq. (5.7) in the previous section, we see that Euler’s method has

h
Tip1(h) = -2-y”(’-;'f), for some &; in (4, ti41).

When y”(¢) is known to be bounded by a constant M on [a, b], this implies
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Proof Note that Eq. (5.16) can be rewritten

h" hn+l

h2
] — * — ] - — — ’ - ] — P p—— A ——— (nml) . = = (n) ' .
Yi+1 Vi hf(tn y:) 5 f(tuy:) n'f (t:ay:) (n_'_ ])'f (‘Eu y(&)),

for some &; in (¢;, 1;+1). So the local truncation error is

n

Yi+t1 — Yi (n) h (n)
i+1(h) = TV (t, yi) = i, ¥(&i)),
Ti+1(h) P (¢, yi) P ])!f (&, (i)
foreachi = 0,1,...,N — 1. Since y € C**![a, b}, we have y*tD (1) = £ (r, y(@))
boundedon [a, b]and r; = O(h"), foreachi =1,2,... , N. " = =

|
EXERCISE SET 5.3

1. Use Taylor’s method of order two to approximate the solutions for each of the following initial-
value problems.
a. y =tel -2y, 0<t<l1, y0) =0, withh =05
b. Y =14+@¢—-y) 2<t<3, y2) =1, withh=0.5
¢. yY=14+vy/t, 1<t<2, y(1)=2, withh =025
d. y =cos2t+sin3t, 0<r<1, y(0)=1, withh =0.25
2. Repeat Exercise 1 using Taylor’s method of order four.

3. Use Taylor’s method of order two and four to approximate the solution for each of the follow-
ing initial-value problems.

a. Yy =y/t—(@/t)?, 1<t<12 yl)=1, withh =0.1
b. y =sint+e*, 0<t<li, y0 =0, withha =0.5

c. y=1/t(*+y), 1<t<3, yl)=-2, withh=0.5
d. y=-ty+4dt/y, 0<t<l, y©0 =1, withh =0.25

4. Use the Taylor method of order two with A = 0.1 to approximate the solution to
y =1+4¢sin(ty), 0<t<2, y0)=0.

S. Given the initial-value problem

2
y = -t—y+tze‘, 1 <r<2, y(l)=0,

with exact solution y(t) = (¢’ — ¢):

a. Use Taylor’s method of order two with 2 = 0.1 to approximate the solution, and compare
it with the actual values of y.

b. Use the answers generated in part (a) and linear interpolation to approximate y at the
following values, and compare them to the actual values of y.

i y(1.04) ii. * y(1.55) ili. y(1.97)



272

CHAPTER 5 = |[nitial-Value Problems for Ordinary Differential Equations

c. Use Taylor’s method of order four with 2 = 0.1 to approximate the solution, and compare
it with the actual values of y.

d. Use the answers generated in part (c) and piecewise cubic Hermite interpolation to ap-
proximate y at the following values, and compare them to the actual values of y.

i.  y(1.04) ii. y(1.55) iii.  y(1.97)
6. Given the initial-value problem

1 Y 2
(o= e — = —y° 1<t <2, 1) = -1,
y=5-77 y(1)
with exact solution y(¢) = —1/¢:

a. Use Taylor’s method of order two with 2 = 0.05 to approximate the solution, and com-
pare it with the actual values of y.
b. Use the answers generated in part (a) and linear interpolation to approximate the follow-
ing values of y, and compare them to the actual values.
i. y(1.052) ii. y(1.555) iii. y(1.978)
c. Use Taylor’s method of order four with & = 0.05 to approximate the solution, and com-
pare it with the actual values of y.

d. Use the answers generated in part (c) and piecewise cubic Hermite interpolation to ap-
proximate the following values of y, and compare them to the actual values.

i. y(1.052) ii. y(1.555) iii. y(1.978)
7. A projectile of mass m = 0.11 kg shot vertically upward with initial velocity v(0) = 8 m/s 1S
slowed due to the force of gravity, F, = —mg, and due to air resistance, F, = —kv|v|, where

g =938 m/s? and k = 0.002 kg/m. The differential equation for the velocity v is given by

mv' = —mg — kv|v|.

a. Find the velocity after 0.1,0.2, ..., 1.0s.
b. To the nearest tenth of a second, determine when the projectile reaches its maximum
height and begins falling.

(e
5.4 Runge-Kutta Methods

Theorem 5.13

The Taylor methods outlined in the previous section have the desirable property of high-
order local truncation error, but the disadvantage of requiring the computation and evalua-
tion of the derivatives of f(¢, y). This is a complicated and time-consuming procedure for

most problems, so the Taylor methods are seldom used in practice.

Runge-Kutta methods have the high-order local truncation error of the Taylor meth-
ods while eliminating the need to compute and evaluate the derivatives of f(z, y). Before
presenting the ideas behind their derivation, we need to state Taylor’s Theorem in two vari-
ables. The proof of this result can be found in any standard book on advanced calculus

(see, for example, [Fu, p. 331)).

Suppose that f(¢, y) and all its partial derivatives of order less than or equal ton + 1 are
continuouson D = { (#,y) |a <t < b,c <y < d}, and let (¢, yo) € D. For every
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Euler’s method with A = 0.025, the Midpoint method with 4 = 0.05, and the Runge-
Kutta fourth-order method with & = 0.1 are compared at the common mesh points of these
methods 0.1, 0.2, 0.3, 0.4, and 0.5. Each of these techniques requires 20 functional evalu-

ations to determine the values listed in Table 5.8 to approximate y(0.5). In this example,

the fourth-order method is clearly superior. n
Table 5.8 Modified Runge-Kutta
Euler Euler Order Four
t; Exact h = 0.025 h = 0.05 h=0.1
0.0 0.5000000 0.5000000 0.5000000 0.5000000
0.1 0.6574145 0.6554982 0.6573085 0.6574144
0.2 0.8292986 0.8253385 0.8290778 0.8292983
0.3 1.0150706 1.0089334 1.0147254 1.0150701
0.4 1.2140877 1.2056345 1.2136079 1.2140869
0.5 1.4256394 1.4147264 1.4250141 1.4256384

_—
EXERCISE SET 54

1. Use the Modified Euler method to approximate the solutions to each of the following initial-

value problems, and compare the results to the actual values.

a. y =te¥ -2y, 0<t=<1, 0 =0, withh = 0.5; actual solution y(t) =
—;-te3‘ — -2-1563‘ + 5674,
b. y =14@—y)? 2<t<3, y@)=1, withh =0.5; actual solution y(¢) = 4.
c. y=1+y/t, 1<t<2, y1)=2 withh =0.25; actual solution y(t) = ¢Inz+2r.
d y = cos2t+sin3t, 0<¢t <1 y©0 =1, withh = 0.25; actual solution

y(t) = % sin 2¢ — %00531‘ -+ %.

2. Repeat Exercise 1 using Heun’s method.

Repeat Exercise 1 using the Midpoint method.

4. Use the Modified Euler method to approximate the solutions to each of the following initial-

value problems, and compare the results to the actual values.

»

a. y = y/t— (y/t), 1<t <2, y(l) =1, with h = 0.1, actual solution y(z) =
t/(1+1nt).

b. ¥y =1+y/t+ /1), 1 <t <3, yl) =0, with h = 0.2; actual solution
y(t) = t tan(Iln¢).

¢. v=—-(+Dy+3), 0=<t<2 y0) = -2, withh = 0.2; actual solution
y(@) = =3+2(1+e#)"1.

d. y = =5y +52+2t, 0<t =<1 y0 =3 withh = 0.1; actual solution
y(t) =12 + e,

5. Use the results of Exercise 4 and linear interpolation to approximate values of y(¢), and com-

pare the results to the actual values.

a. y(1.25)and y(1.93) b. y(2.1) and y(2.75)

¢. y(1.3)and y(1.93) d. y(0.54) and y(0.94)
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© % e

10.
11.
12.

13.

14.

15.

16.

Repeat Exercise 4 using Heun’s method.

Repeat Exercise 5 using the results of Exercise 6.

Repeat Exercise 4 using the Midpoint method.

Repeat Exercise 5 using the results of Exercise 8.

Repeat Exercise 1 using the Runge-Kutta method of order four.

Repeat Exercise 4 using the Runge-Kutta method of order four.

Use the results of Exercise 11 and Cubic Hermite interpolation to approximate values of y(¢),
and compare the approximations to the actual values.

a. y(1.25) and y(1.93) b. y(2.1)and y(2.75)

¢. y(1.3)and y(1.93) d. y(0.54) and y(0.94)

Show that the Midpoint method, the Modified Euler method, and Heun’s method give the same
approximations to the initial-value problem

y=—y+t+1, 0<r<l1, y0)=1,

for any choice of 4. Why is this true?
Water flows from an inverted conical tank with circular orifice at the rate

dx VX
— = —0.6mr*/2 ,
di TV A

where r is the radius of the orifice, x 1s the height of the liquid level from the vertex of the
cone, and A(x) is the area of the cross section of the tank x units above the orifice. Suppose
r = 0.1 ft, g = 32.1 f/s?, and the tank has an initial water level of 8 ft and initial volume of
512(n/3) ft°.

a. Compute the water level after 10 min with A = 20 s.

b. Determine, to within 1 min, when the tank will be empty.

The irreversible chemical reaction in which two molecules of solid potassium dichromate
(K,Cr,0O7), two molecules of water (H,0), and three atoms of solid sulfur (S) combine to yield

three molecules of the gas sulfur dioxide (80O, ), four molecules of solid potassium hydroxide
(KOH), and two molecules of solid chromic oxide (Cr,O3) can be represented symbolically

by the stoichiometric equation:

2K2CI‘207 -+ 2H20 + 3§ —> 4KOH + 2CI‘203 -+ 3502

If n; molecules of K;Cr, 07, n, molecules of H,O, and n4 molecules of S are originally avail-
able, the following differential equation describes the amount x (¢) of KOH after time :

dx . x\? . x\? , 32\’

ar o\t \"T2)\BP"4 )
where £ is the velocity constant of the reaction. If k = 6.22 x 107°, n; = n, = 2 x 10%, and
ny = 3 x 10°, how many units of potassium hydroxide will have been formed after 0.2 s?

Show that the difference method

Wy = &,

Wi = wy +ay f &, wi) + aZf(tf + a7, W +52f(f:'1 w;)),

foreachi = 0,1,..., N — 1, cannot have local truncation error O (4>) for any choice of
constants a;, a;, a2, and §,.
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17. The Runge-Kutta method of order four can be written in the form
Wy = 1,

h h
Wi = wW; + '6‘f(fn w;) + é'f(ti +aih, w; + 8 Af (1, w;))
h
+ 'é‘f(ti + arh, wi + Shf (t + voh, wi + y3hf (4, wi)))

h
+ gf(n + ash, w; + Bhf (G + yah, wi + yshf (4 + veh, w; + yhf (5, wi)))).

Find the values of the constants

&, &, (&3, 311 625 63-.- V2. Y3, Ya, Vs, V6, and V7.

L ]
5.5 Error Control and the Runge-Kutta-Fehlberg Method

The appropriate use of varying step size was seen in Section 4.6 to produce computation-
ally efficient integral approximating methods. In itself, this might not be sufficient to favor
these methods due to the increased complication of applying them. However, they have
another feature that makes them worthwhile. They incorporate in the step-size procedure
an estimate of the truncation error that does not require the approximation of the higher
derivatives of the function. These methods are called adaptive because they adapt the num-
ber and position of the nodes used in the approximation to ensure that the truncation error
1s kept within a specified bound.

There 1s a close connection between the problem of approximating the value of a
definite integral and that of approximating the solution to an initial-value problem. It is
not surprising, then, that there are adaptive methods for approximating the solutions to
imtial-value problems and that these methods are not only efficient, but also incorporate

the control of error.
An ideal difference-equation method

wi+1=wf+hf¢(tf$wiihf)! i=09 ]-5*-- 1N_15
for approximating the solution, y(t), to the initial-value problem
Y = f@t,y), a<t<b, y@)=a,

would have the property that, given a tolerance £ > 0, the minimal number of mesh points
would be used to ensure that the global error, |y(f;) — w;|, would not exceed ¢ for any
i =0,1,..., N. Having a minimal number of mesh points and also controlling the global
error of a difference method is, not surprisingly, inconsistent with the points being equally
spaced in the interval. In this section we examine techniques used to control the error of
a difference-equation method in an efficient manner by the appropriate choice of mesh

points.
Although we cannot generally determine the global error of a method, we will see

in Section 5.10 that there is a close connection between the local truncation error and the
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The local truncation error involved with a predictor-corrector method of the Milne-

Simpson type is generally smaller than that of the Adams-Bashforth-Moulton method. But
the technique has limited use because of roundoff error problems, which do not occur with

the Adams procedure. Elaboration on this difficulty is given in Section 5.10.

/|
EXERCISE SET 5.6

1.

Use all the Adams-Bashforth methods to approximate the solutions to the following initial-
value problems. In each case use exact starting values, and compare the results to the actual

values.

a. y =te* -2y, 0<t<1 y0) =0, withh = 0.2; actual solution y(t) =
ste’ — -2-’5—33’ + e,

b. y=14+0—y)? 2<t<3, y)=1, withh =0.2; actual solution y(¢) = t—l—llj.

¢. Y =1+y/t, 1<t=<2, y@)=2 withh =0.2; actval solution y(¥) =1tInt+2t.

d cos2t +sin3t, 0 <t <1 y@ =1, withh = 0.2; actual solution

y(t) = %sin2t — { cos 3t + §.
Use all the Adams-Moulton methods to approximate the solutions to the Exercises 1(a), 1(c),
and 1(d). In each case use exact starting values, and explicitly solve for w;;,. Compare the

results to the actual values.

Use each of the Adams-Bashforth methods to approximate the solutions to the following
initial-value problems. In each case use starting values obtained from the Runge-Kutta method

of order four. Compare the results to the actual values.

a. Yy =y/t—(y/t)*, 1<t<2, yl)=1, with 2 = 0.1; actual solution y(r) = 1

b. vy =1+y/t+ (y/t)?, 1<t <3, y() =0, withh = 0.2; actual solution
y(t) = ttan(In t).

c. y=—-(@+Dr+3), 0<r<2 y0) = -2, withh = 0.1; actual solution
y() = =34+2/(1 +e*).

d Yy =-5y+52+2, 0<t=<1 y0)=1/3, withh
y(t) =12 + 37,

Use Algorithm 5.4 to approximate the solutions to the initial-value problems in Exercise 1.

Use Algorithm 5.4 to approximate the solutions to the initial-value problems in Exercise 3.

Change Algorithm 5.4 so that the corrector can be iterated for a given number p iterations.
Repeat Exercise 5 with p = 2, 3, and 4 iterations. Which choice of p gives the best answer

for each initial-value problem?
The initial-value problem

0.1; actual solution

y=e, 0<t<020, y0) =1

has solution

y(t) = 1 —In(1 — er).

Applying the three-step Adams-Moulton method to this problem is equivalent to finding the
fixed point w;,; of

h
g(w) = w; + ﬁ[9e“’ + 19¢¥i — S5e%i-1 + e¥i2],
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a. With 2 = 0.01, obtain w;,; by functional iteration fori = 2, ..., 19 using exact starting
values wg, w, and w,. At each step use w; to 1nitially approximate w, ;.

b. Will Newton’s method speed the convergence over functional iteration?
8. Use the Milne-Simpson Predictor-Corrector method to approximate the solutions to the initial-
value problems in Exercise 3.
9. a. Denve Eq. (5.32) by using the Lagrange form of the interpolating polynomial.
b. Derive Eq. (5.34) by using Newton’s backward-difference form of the interpolating poly-
nomial.

10. Derive Eq. (5.33) by the following method. Set
y(tiv1) = y) +ahf (4, yt) + bhf iy, y(ti-1)) + chf (tiz, y(ti2)).

Expand y(fiy1), f(ti-2, y(t;-2)), and f(t_,, y(t;_1)) in Taylor series about (/;, y(#;)), and
equate the coefficients of #, A% and 4> to obtain a, b, and c.

11. Derive Eq. (5.36) and its local truncation error by using an appropriate form of an interpolating
polynomaual.
12. Derive Simpson’s method by applying Simpson’s rule to the integral

i1

Y(tiv1) — y(tiz1) = f@, y(@)dr.

i1
13. Derive Milne’s method by applying the open Newton-Cotes formula (4.29) to the integral

Ytia) — v = | F@. y@)) dr.

-3

14.  Verify the entries in Table 5.10.

T
5.7 Variable Step-Size Multistep Methods

The Runge-Kutta-Fehlberg method is used for error control because at each step 1t pro-
vides, at little additional cost, two approximations that can be compared and related to
the local error. Predictor-corrector techniques always generate two approximations at each

step, so they are natural candidates for error-control adaptation.
To demonstrate the error-control procedure, we will construct a variable step-size

predictor-corrector method using the four-step explicit Adams-Bashforth method as pre-

dictor and the three-step implicit Adams-Moulton method as corrector.
The Adams-Bashforth four-step method comes from the relation

h
y(iv) = y) + Ez[SSf(fn () =39 f(ti—1, y(ti—1))

251 R
+ 37 f(ti—2, Y(t;i2)) — 9f (ti—3, y(t;—3))] 1 720)’(5) (a)k’,

for some [; € (t;_3, t;+1). The assumption that the approximations wg, wy, ... , w; are all
exact implies that the Adams-Bashforth truncation error 1s

y(tin) — w251 X
i = oy Ok (5.39)
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We can approximate y(1.0) using the command

>g(1.0);

o give

i =

3
= 1.0, (1) = ~.353394346807534676, - y(r) = 2.57874665940482072
,

The other one-step methods can be extended to systems in a similar way. When
error control methods like the Runge-Kutta-Fehlberg method are extended, each com-

ponent of the numerical solution (w;;, wy;, ..., wy;j) must be examined for accuracy.
If any of the components fail to be sufficiently accurate, the entire numerical solution
(wy;, wyj, ..., Wy;) must be recomputed.

The multistep methods and predictor-corrector techniques can also be extended to
systems. Again, if error control is used, each component must be accurate. The extension
of the extrapolation technique to systems can also be done, but the notation becomes quite
involved. If this topic is of interest, see [HNW1].

Convergence theorems and error estimates for systems are similar to those considered
in Section 5.10 for the single equations, except that the bounds are given in terms of vector
norms, a topic considered in Chapter 7. (A good reference for these theorems is [Gel,

pp. 45-72].)

[ T R
EXERCISE SET 5.9

1. Use the Runge-Kutta method for systems to approximate the solutions of the following sys-
tems of first-order differential equations, and compare the results to the actual solutions.

a. u’l =3H1+2H2-—-(21‘2+1)€2I, 0<t<I1, u(0)=1,
u, = 4u; + uy + 2+ 2t —de¥, 0<1<1, u0)=1,;
h=02; actualsolutionsu,(r) = ze*—31e~+e¥ and wuy(t) = e +3e " +1%e”.
b. u;=—4u; —2u;+cost+4sint, 0<r=<2, u(0)=0;
uy = 3uy +up —3sint, 0<1<2, wu0)=-1;
= 0.1; actual solutions u;(¢f) = 2¢~" —2¢ % +sint and wu;(t) = —3e" +2e7 .
c. ui=u, 0=<t<2, w0 =1L
u, = —uy—2e'+1, 0<tr=<2, w0 =0
= —u;—€e+1, 0<t<2, wus3(0)=1;
h = 0.5: actual solutions #;(¢) = cost +sint —e' + 1, wuy(¢t) = —sint +cost —é’,
and u3(t) = ~—sint + cost.
d u=u—-u+t, 0<1=<1, wu)=1
uy, =3, 0<t<1, w)=1;
u; =ur+e’!, 0<t<1, u3(0)=-1,
h =0.1: actual solutions w,(t) = —0.05t3 + 025t + ¢t + 2 — e, uy(t) =t + 1,
and u3(2) = 0.25¢*+t — e
2. Use the Runge-Kutta for Systems Algorithm to approximate the solutions of the following
higher-order differential equations, and compare the results to the actual solutions.
a. y' =2y +y=té—t, 0=<t=<1 y0) =y(©0 =0 withh =0.1;, actual
solution y(¢) = %r3e’ —te' +2e¢ —1 =2

l

=
)



