First project for numerical method group B

where p denotes the probability A will win any specific rally (independent of the server). (See [Keller, J], p. 267.) Determine, to within 10-3, the minimal value of p that will ensure that A will shut out B in at least half the matches they play.
30. In the design of all-terrain vehicles, it is necessary to consider the failure of the vehicle when attempting to negotiate two types of obstacles. One type of failure is called lumg-up failure and occurs when the vehicle attempts to cross an obstacle that causes the bottom of the vehicle to touch the ground. The other type of failure is called noJe-in failure and occurs when the vehicle descends into a ditch and its nose touches the ground. The accompanying figure, adapted from [BekJ, shows the components associated with the nose-in failure <?f a vehicle. In that reference it is shown that the maximum angle a can be negotiated by a vehicle when $f 3$ is the maximum angle at which hang-up failure does not occur satisfies the equation

$$
A \sin a \cos a+B \sin 2 a-C \cos a-E \sin a=0
$$

Where

$$
\begin{gathered}
A=l \sin B_{l}, B=l \cos B_{l}, C=(h+O .5 D) \sin B_{l}-O .5 D \tan B_{1}{ }^{\prime} \\
\text { and } E=(h+O .5 D) \cos \beta_{l}-O .5 D .
\end{gathered}
$$

find a, b and c by Newton's Methexl using computer programming (fortran - paskal or C) until two week later
a--. when $l=89$ in., $h=49$ in., $D=55 \mathrm{in}$., and $\beta_{l}=11.5$ degree .so, angle α is Verify
b-- Find α for the situation when I, h, and β_{l} are the same as in part (a) but $D=30 \mathrm{in}$. c- plot variation of α against β_{l} and D by changing :
$\beta_{1}: 10-15-20-25$ degree
D: $25-30-35-40-45-50-55-60 \mathrm{in}$.
When $l=89$ in., $h=49$ in

