Vector and tensor methods

1.1 THE FORMULAE OF VECTOR ANALYSIS SUMMARISED

In our previous book (O’Neill and Chorlton 1986), the main elements of vector field
theory were developed together with some tensor analysis. Here a brief resume is
given of vector analysis and further work then follows on the tensor calculus, which
is needed for the study of real fluid flows.

IfOA =a, OB =band AOB = 0, then the scalar product of the two vectors a and
b is defined to be ab cos # and is denoted by a-b so that

a-b=b-a=abcosb. (1.1)
The reader will note that scalar product formation is commutative. With the two
vectors localised at O, a plane AOB is formed and, at each point of the plane, two
directions normal to it may be drawn and specified by the equal and opposite unit
vectors +n. If the direction +n is chosen to be in the sense of a positive rotation
from a and b through 0, i.e. in the sense of a right-handed screw rotation from a to

b, then we can form the vector product of a and b. This is usually donated by a x b
but the alternative form a A b is sometimes used. It is defined to be

axb=absin0n. (1.2)
From the definition we see that vector multiplication is non-commutative since
b x a = (ba sin §)(—n)= —a x b. (1.3)

If now Ox, Oy, Oz form a tri-rectangular right-handed Cartesian coordinate
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in these axes and [h],hz_h‘]

12
frame and if [a;. @2 a,] denote the components of a
those of b, s0 that

a:a,i+a2j+a,k=[a1faz,a,].ctc. (14)

then the scalar product (1.1)in component form is

g.b:alhj+a1h2 +03b3, “5]

using i* =i-i. elc., and i-j=0, etc. Likewise the vector product (1.2) in component

form becomes

| ik
axb=la, a, a3 (1.6)
b, by b

which utilises such basic results as i x i =0, etc., i xj= —jxi=k, etc. Here i, j, k

are the unit vectors in OX, OY, OZ.
If ¢ =[e,, c5,C3] is a third vector, then we can form the scalar triple product

a-(b x ¢)of the vectors a, band c. This is denoted by [a, b, ¢] and it is easy to show thal

a, a, da;
[a,b,c]=[b, b, byl (1.7)
Cp G2 &

Cyclic permutation of the vectors in a scalar triple product leaves it unchanged so that

[a,b,c]=[b,c,a] =[c,a,b], (1.8)

but their acyclic permutation results in a sign change:

[C, bt a] = _'[a, b, CJ‘ elc. “ 9}

The :

he ‘:':;?ir?’fd”c‘ of a with the vector b x ¢ is simply a x (b x ¢) and this is callcd

rule for “paﬁs‘:opfodfuct ofa, b and c. By using the component forms for a, €tc. the
n of the vector triple product may be established in the form

axlhx:jz.[a.c]b_l‘l_bk‘ (1.10)

At this stage, we
proceed from the algebra to the calculus of vectors. If throughott

a “’SiOn of 3-s ce §
at each P(x, }'.le of T}?eh;ve, a single-valued differentiable scalar function $(x.J+*)
gion, then the gradient of ¢ is the vector function V¢ OF
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grad ¢ defined by
o0 09, (1.11)

o6 .
Vb=gradgp=—1i+-
pmpradg=c it

An alternative and equivalent form is

aPy (1.12)

v
¢¢3n

where n is the unit vector along the normal at P(x, y,z) to the level surface
¢(x, y, z) = constant through P and dirccted from this level surface to the neighbouring

one through P'(x + dx, y + dy, 2 + 02). Letting OB =r= [x, y,z],and OF ' =r+ér=
[x + éx, y + 8y, z + dz], so that PP’ = 6r = [6x, dy, 62], then
Gp— =09 =0r-Vo

or, in the limiting form,

d il
d¢=—¢-|dx+-¢dy+?¢>dz=dr-%. (1.13)
dx dy dz
In the case of a vector function F =[F,, F,, Fy], where F, = F,(x, y,z) (n=1,2.3),

one can obtain the divergence of F, denoted by div F or V- F, a scalar function defined
to be

dF,

oF, OF
divF=V-F="— sl Blgonit (1.14)

€ S Rt B
dy oz

and also the curl of F, denoted by curl F or ¥ x F, a vector function defined to be

N T T

curl F=V x F= é‘_ E i (1.15)
dx dy 0z
Fl Fz F}

The Laplacian of ¢ is another scalar defined to be div grad ¢ or V3, so that

3¢ ¢ ¢
. B i v NN, ¢ oV Pl T 1.16
divgrad ¢ =V-Vo=V"¢ -3 + 2 t5, (1.16)

2

A harmonic function ¢ satisfies Laplace’s equation V¢ = 0.
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In the vector calculus a number of important vector identities arise,‘ In addition
to ¢ and F defined as above, we introduce a second differentiable function G. Then

the following identities hold:

curlgrad ¢ =V x Vg =0, (1.17)
diveurl F=V-(Vx F)=0, (1.18)
Vx(VxF)=V(V-F)—V?F or curlcurl F=graddivF - ViF, (1.19)
V- (FxG)=G-(VxF)—F-(VxG), (1.20)
Vx(FxG)=(G-V)F—(F-V)G + F(V-G}-G(V-F), (1.21)
V(F-G)=(G-V)F+ (F-V)G+ G x (Vx F)+ F x (V x G), (1.22)
(F-V)F =V({F?) —F x (Vx F), (1.23)
VIF =i VF, +j V F, + k V°F,. (1.24)

The last result is suitable only for Cartesian coordinates.

In the following, S is a closed surface containing a volume V and n is the unit
vector to the surface element dS of § drawn outwards from V. The vector element
of area is defined to be dS =dS n. The Gauss divergence theorem states that

'[ v-wv:j F-dS=Jn-FdS. (1.25)
v 5 M
This leads to the alternative definition of div F at a point:
. ; 1
div F = lim (AJ‘ n-FdS). (1.26)
V=0 4 5
Immediate derivations stemming from the Gauss divergence theorem are
J V¢dV=jn¢dS=J¢dS, (1.27)
¥ 5 s
'[VdeV=J‘andS=J[deF], (1.28)
¥V 5 5

When € is a closed curve forming the rim of an open surface S, with vector arc
element dr

F:dr= | n.curl Fds,
ﬂgg L CUrLEES (1.29)

This is Stokes’s theorem.
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1.2 GENERAL ORTHOGONAL CURVILINEAR COORDINATES

Suppose that at each P(x, y,

z) of a region of 3-spa i ;
k ; : -space ther
differentiable scalar lunctions i ¢ exist three uniform

Gy zh (i=1,2,3) having as level surfaces

ulx,y.z)=¢; (i=1,2,3), (13)

where each c; is independent of x, y, z. Let us further suppose that these three surfaces
are such that their curves of intersection through each P are mutually orthogonal
Then (u,, u,, uy)forms a system of coordinates alternative to the rectangular Canesiar;.
system (x, y, z): they are called the general orthogonal curvilinear coordinates of P.

In rectangular Cartesian coordinates (x, y, z) the vector arc element, denoted
either by dr or ds, is given by

dr=dxi+dyj+dzk. (1.31)
The corresonding form in general orthogonal curvilinear coordinares (u,, u,, us) is
dr=h, du, 4, + h, du, 4 + h, du, 4,, (1.32)

involving the three scale factors hy(u,, uy, uy) and the three unit vectors 4, (i=1,2,3)
such that, for i, j=1,2,3,

a’=1; a-4;=0fori#j (1.33)

Equations (1.33) express orthonormal relations between the unit vectors which are
essentially tangential to the curves of intersection of the three surfaces (1.30)

For the special case of rectangular coordinates (x, y, z) orthogonality holds and
we may take u, = x, u, =y, uy=2z; & =i, 4, =j, =k Comparison of the forms
(1.34) and (1.35) shows that, for the Cartesian system, h, =h, =hy=1.

The vector functions grad, div and curl may be expressed in terms of the general
orthogonal coordinates u; and the scale factors h; which enter through the form (1.32)
(i=1,2,3). In the lollowing, U = Uluy, 43, 43) is an appropriate sca]ar function and
F(u,, u,, uy) = F,(uy, uy, uy), is a suitable vector function, wl_merc i = (uy, ug u3)
(i=1,2,3). All relevant derivatives for the formation of gradient, divergence, curl
and Laplacians are supposed to exist 50 that

_dag, 1o, 00 (1.34)
Thoau, t hyduy T hyduy

vu

P ¢
- I_ _ﬂ (hyhsF))+ i (hsh F)+ < (‘I,J'I:F_\]-l- (1.33)
hyhyhy | O, duy s :
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hi. hd, hib The scale factors for the system arc 17
1%1 251 3%3
v x F=—l-— _6‘ 2 _6‘_ f (1.36) h,=1, hy=r, hy=rsin 0.
hyhghy | Bu,  fup  duy s
hyF aki = Ulr, 0, =F g
hite ey Mot Taking U (rG.4). F=Fi+F+ F 4. where F.=F(r.0,¢). e
| [ o [hhydU\ @ (hsh,@U\ @ (hhy0U that 1.0, ). etc.. we find
Vive— | (BT ) (22 e | =] [ (137
hohghy Léuy \ by du,)  Buz\ hy duy/  uy \ hy duy
VU—@EE*.!‘?Uﬂ I au .
For the particular orthogonal systems of cylindrical and spherical polar coordinates, ar réd rsinddg ¢. (1.46)
we now give the forms corresponding to (1.34)-(1.37). i aF o
V'F=T-.--— [sinﬂ'- - -J'+rl'-'(s12(}f_-‘¢].+ey.-};-°]
Fany ér a0 6 | (1.47)
1.2.1 Cylindrical polar coordinates (R, ¢, 2) i . o
We take « = R, uy = ¢, uy =z and the linc element 0 rsinfé
VxFe_ | ¢ a F
dr=dR R+ Rd¢ ¢ +dzk. (1.38) rPsinfdr 0 8 | (1.48)

Fr rFg rsinOF,
Hence the scale lactors for this system are

1 . d au 0 -
VU= |sinf— ( 28N 8 e g A Y
i hy=R, ho=1. (1.39) 2 sin ]: = r = + a0 sin 0 0 + cosec ) _P_¢3 . 11.49)

Hence, for U = U(R, ¢.z), F= FgR + F ¢ + F.k, where Fp=Fg(R, §,2), elc.,
the formulae (1.34)-(1.37) inclusive give

U | U U 1.3 CONTRACTED NOTATION AND THE SUMMATION CONVENTION
N P
VU = o R+ ; Frja b+ =k (1.40) In the abridged notation, we write
- AF -] &
V-F=':{ (L% lRFnH;;uRL;)’ (1.41) i R (1.50)
éz &
b=b&, + b, + by¢; =bg, (1.51)
l R R¢ &k
la & a the vectors &, &, and &, now denoting the Cartesian unit vectors formerly written
VxF= zlaR 26 o {1.42) as i, j and k, respectively, and being in the positive directions of the x, y and = axes.
- : £ It will also be convenient to denote the coordinates (x,y.z) by (¥, x5 X3
Fr RF, F. respectively. For a right-handed frame, &, x &, = &,. etc. The scalar product a-b is
1 A A 2y a2 Sii‘l‘lpl}'
(5 W 1¢ U
vZU=R[aR(RL‘-R)+R‘? 5+R7~’_]' (149 ¢
d ég dz a:-b=a,b, +a,b, +a;b,=apb, {1.52)

Note that, in (1.50)-(1.52), we have introduced the summation convention for repeated

subscripts in each term on the far right-hand side. . P

To illustrate further the summation convention let us conSfdcr e ‘“"’"mni.zd

ax,where both i and j can range through the values '1;02, 3 Fim]tly:tjl't'i'-:‘iﬂi:fl 3

dr=drb+rd0d+rsin0dg 4. 144 subseript which means that summation takes place Wit! rESI?'*:_‘-‘l ol "each of
(1.44) j=3, thereby generating a;,x, + a;;X2 + diaXs- When i is allowed lo assume

1.2.2 Spherical polar coordinates (r, (), b)
We take u, =r, 1t =0, uy = ¢ and the line clement
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the values 1, 2. 3 separately, the three sums

@y Xy +ay;x; a3,
Ay Xp +d;3,X; + az3Xy,

ay Xy +a;;Xy + d33%s,

are gencrated. Hence the terse form a;;x; means these three sums. The repeated
subscript is a dummy and generates summation. It must not be repeated more than
once. We note that a;x;=a,x,. since j and k are both dummy subscripts. The
subscript i is free and must not be replaced by any other subscript.

The Kronecker delta is defined to be

d;;=1 when i = j (no summation), (1.53)
=0 when i #j.

Then 6,3 =0, d,, = 1.etc., but
Oy=0y; + 053+ 053=3.

For the form é,.x,, we have

) jad
0;5%;= 03Xy + 8;3X; + 313X,

When i = 1, the right-hand side becomes 8, ,x, +8,,%5 + 8,,x; = x,. Similarly, when
i=2.6,;x;=x,and, wheni=3,8,;x; = x;. Thus we have the important result that

0;:X

=X (1.54)
which shows that the action of §; on x; is to substitute the free i for the dummy j.

In our previous book (O’Neill and Chorlton 1986, pp. 72-73), it is shown that,
if the three coordinate axes Ox; (i = 1, 2, 3) form a right-handed orthogonal coordinate
frame and if this frame undergoes rotation about O to new positions specified by
Ox; (i=1.2,3) such that the newly positioned axis Ox,' has the direction cosincs
[liy. I3, 1;3] with respect to the former frame, then Ox; has direction cosines [/, 15, [5;]
with respect to the primed axes. The matrix [1;,] is called the transformation matrix
of the rotation. The orthonormal properties of the I values are established in the forms

iy =8,,=1,1,. (1.55)

In (1.55), r and 5 are both free subscripts and i is a dummy subscript. Full details of

these developments appear in our previous book, and we now make use of them in
section 1.4.

Sec. 1.4] Cartesian tensor of order
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14 CARTESIAN TENSOR OF ORDER

Let tj.. be a quantity involving n subscripts i, j, k. .

. ; ) -. and suppose th
nght-handed orthogoqal rotation of coordinate axes, i Chiingczpto ol :;_:;rumnii‘t?r a
involving n new subscripts P- 4.7 ... Under this type of transformation we su ase
that the orthonormal relations described in (1.55) hold and that o

=14

'
upqr... pitqj ri...“r‘jk 3

(1.56)

involving n of the I values on the right-hand side. Then W is called a tensor of

order (or rank) n. Equation (1.56). coupled with (1.55), expresses the law of
transformation of such a tensor.

From (1.55) and (1.56), we prove that

upqr.., o iip*jq';tr...u;jk,..' “ .5.”

Relabelling the subscripts in (1.56) gives

Wik, = lialjply. 1ap,

and so the right-hand side of (1.57) becomes

Utpijq'tr...}”Iu'tjﬂ,lr“.uwy..,) = {'lip'iia]u;'qijﬂ)“lrrk;]“ L
61’4‘5‘136'?' " Uapy

=U

pqr..

on using the substitution properties of the Kronecker deltas. Conversely, it is easy to
show by the same devices that starting from (1.55)and (1.57), equation (1.56) follows.
If, starting from the nth-order tensor u,; , we write j =1, then

Ui, = Uy, U0, U3k

since i is repeated once only so that summation takes place with respect to this
dummy subscript, the remaining n — 2 subscripts being free. We prove, sFarlmg I'r9m
(1.55) and (1.56), that u, s a Cartesian tensor of order n — 2. This requires showing
that it obeys the law of transformation of a tensor of order n—2. To this end, we
consider the expression

Lds Wit

involving n — 2 of the I values and n — 2 free Subscripts ryse... Since

Uitkm,,, = 511”:}km...
= "p:"m“utn...

= 5N"I‘JQJ”U‘""‘H"
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we hnve

"ri’am.._’"lllu... - ”vl"nu ._"fsﬂl',,,f"ﬂm,, )
= B pgUpilatl sl Wi,
-

g

.
= s+

Thus

u;pu e r’llnn...uillm. 0} “ 58}

This equation, together with (1.55), expresses the law of transformation of a Cartesian
tensor of order n - 2, as required.

The process of obtaining from the given nth-order tensor g, a tensor of order
n - 2 by taking j=iis equivalent to forming 8w, and is known as contraction.
Such u process applied 10 a second-order (NSO w; Gives Syt = 16, = Uy, + Uy + U35,
which ix a tensor of order zero, i.c. n scalar.

1.5 THE ALTERNATING SYMBOL, ¢,

Starting from the set of numbers (1, 2, 3), we can permute them cyclically to give the
threc even permutations

(L2300 (2,3, 1):3.1,2).

I, however, starting from (1, 2, 3), we exchange any two clements leaving the other
In situ, then we generate a group of acyclic or odd permutations, i.c.

QL3232

Any other grouping of the three numbers (1, 2, 3), suchas (2, 2, 3).is not permutation
of them ut all.

The ulternating symbol ¢, is defined to be

g = + 1 when (i, j, k) is an even permutation of (1, 2, 3),
=~ 1L when (i, j. k) is an odd permutation of (1, 2, 3),
= O when (i, /. k) is not a permutation of (1,2, 3).

Thus ey ;= 1, 2,4, = -1, und ¢,;, = 0.
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The third-order determinant
ay a; ap,)
A=detg;=|a a
i 21 22 G, (1.59)

a3 @33 0y,

has an expansion of the form ¢;,a,,a,,a,,. Using the summation convention.

Eijulyifl2 A3k = E12301 107203, + £14,a, 0,40,
k 2343,
+ €213 2021033 + £;33,0,,85,a,,

+£3128138;,83; + £35,0,34;,ay,,
where zero terms involving £, , 5, etc., have been omitted. The last expression simplifies 1o
ay1(@32833 — d2383,) — @,5(a3,853 — ay3ay,) + a,5(ay a5, — a3y )

which is the expansion of A across its top row. In fact the form ¢;,a,,a,,a,, can be
used as a definition of A as indeed it often is in more sophisticated treatments of
determinants.

Starting with the determinantal form (1.59), let us interchange rows (I, r); (2. 5);
(3,1) to generate the new determinant A" defined to be

. ar}l
#_ (1.60)
A= i‘a.ﬂ (L] asB] H

Gy G 4

Since A=¢,,a,,a,,a3, A= £,0,4,a,, 2 mere replacement ‘of 1.2, 3 by'r, s.l rn
respectively. How is A’ related to A? From elementary determinantal theory E" e“"d
number of row interchanges of a determinant leaves the delrermmanl‘ unc ang;d.
Hence, if (r, s, 1) is an even permutation of (1,2,3). then A"=A. If it is an o
permutation, then A’ — — A. If two rows are equal in A", then A"=0 and rnoreg:::
(r.5,1) is not then a permutation of (1. 2,3) at all. Combining the three cases g

(1.61)
A=¢g A

L&

Hence,

(1.62)
C..,,ﬁ = Emaﬂ-auﬂn = j;‘gu,}"‘_;jull'

; ‘hen the elements
The last form in (1.62) follows by recalling that A is unchanged when

of its matrix are transposed so that
(1.63)

i iy gy = Eipdindjaey-
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It is of some importance o gstablish connectio
We prove the following results:

ns between the 4 and & symbols.

Eatrs = 0405 — 0udy (1.64)
et = 20 (1.65)
afin = 6. (1.66)

The forms cited suggest that we first evaluate ¢,,, and then &z€,. Since

“n__ dy; Oy3
£l iy s ﬂmnr a3y days
mnu. dyy fyy
16, 12 013
ni&_.mn‘bu_. =18y, mnu .muu =1
da1 Ga2 day

Interchange of rows (1,r); (2, 5); (3, k) in the last form gives

quu m1~ m_1u
£ad,0, 0. =18, b, 6,

m._ ma m._u
e
_.mﬁ__ m._.u &-u
_ms! = .m._ m.-n m.w ol
“m.._ m: m.w

The operation of ¢, il ; - ;
I mﬂm on g, will interchange the columns {1, i) (2, ) (3, k) in the

._m:_ 8, du
Eipley = .m-. m..._ mﬂ.

ty _ma“ ._m...._
In the last form, take 1 = & 1o give

.m.m: &..m _mnn
LijaCos Ivmu_“ 8, 8,
&E hE. w [

" Gec. 1.6] Proper tensors and pseudo-tensors >

= _.___..wm.a__ = m:.w_:_ - mn...ﬁuam:. — 0, + m}a:m_... bk
= 30,0,; = 0,:0,;— 38,0+ 8,6, + 6,9, — 5,5,
= 0,0, — 8,6,

When we recall that ;= d;,. we see that the last form is accordi ;
' Iy th ;
side of (1.64). ingly the right-hand
Next, take j=s5 in (1.64). Then

Epibras = 04(3) — 8,0, =30, - 6, =25,

which establishes (1.65). Finally take i =r in {1.65) to give (1.66)

1.6 PROPER TENSORS AND PSEUDO-TENSORS

Reverting to section 1.3, we suppose that [[,;] is the matrix of a transformation which
is orthogonal but not necessarily right handed, so that the original right-handed
orthogonal frame O X' may be transformed into another orthogonal frame Ox; which
may be either right or left handed. Then the determinant of the transform is

A=detl;=+1, (1.67)

and the orthonormal relations

(1.68)

__.«-mt = _m: sl H..._._.q.-

still prevail. Thus, since &/, = &

._qh._...._‘___n.ﬁ = g, 4, 1.69}

is the determinant derived from & by interchanging

51 W i 1.69 i
nce the left-hand side of (1.69) 1.67) and (1.69). we may also wrile

the pairs of rows (1,r); (2, 5): (3,1). From (

(1.70}
Epye = _P_.!.._ua.ﬁ_-h..i.

A= +1and(1.70)in conjunction with (1.68)
rd-order tensor. However, a change —Ga
1. Thus the nature of the transformation

petuated orthogonality of the axes w..,:
handed. Such a quantily

For a specifically right-handed rotation, A =
expresses the law of transformation of a thi
w_.aw_:- to a left-handed frame makes .w_ =-
of e, into £, depends not only on the per
mwoﬂ_.__ s."._n“ﬂo_. .ﬂwm stay right handed or _n__namn o w.: e
&y is thus termed a pseudo-tensor of the third order. 1t is also u_oz. o e
axial tensor because of its dependence on the nature of :.._n uxﬂ._lm:mo— i
The term tensor density is also used. A tensor for which 1 : _hnu._.a.au o
holds unchanged for both right- and left-handed orthogond
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sccond-order proper tensor is afforded by 4, since
mmetric pscudo-tensor of the third order, since the
caving the third in situ changes s sign,

rks about pscudo-tensors. If a;; is & proper tensor

proper tensor. An example o.q a
Sy = L8, Wenote that e, is a sy
interchange of any two subscripts |

Let us extend the previous rema cudo
of the second order. then its law of transformation 1s

a, = Lilasip

subject to the orthonormal relations [1.68). If, however, its law of transformation were

h" - bl_z,_.-_.ﬁ_.-;

where A = detl;= £ 1. then, as the ransform is now axially dependent in the sense
of lefi- and right-handedness. u;, is a pseudo-tensor of the second order. To generalise,
we may say that the law of transformation of a pseudo-tensor of the nth order of
the form a;;, _involving subscripls i.j.k, ... 10 af, is

af = AL Lhya (.70

subject to (1.68), where A = det I, = + 1. Ttiscasy toestablish the following results.

(1) The sum or difference of two pscudo-tensors of the same order is another
pseudo-tensor of that order.

(2) The product of a pseudo-tensor with a proper tensor is another pscudo-tensor.

{3) The product of two pseudo-lensors is a proper tensor,

4) A nﬂn:mﬂna pseudo-tensor of order n { = 2) is another pseudo-tensor of the order
N

Thus, to illustrate result (3). if a,, and b, are pseudo-tensors of orders 3 and 2
respectively, then
apbr,= E_r_._.,.__—an_i:?.:-__{w%v
= ____..__u»__:____i-._n-."h.....}q_- -
This shows that a,,b,, is a proper tensor of order 5.

su _.._ucmnm uﬂ”_d_._uq. .__Fw:u__.c:. and one which is important in continuum mechanics,
P ata;, isa skew-symmelnic second-order proper tensor and let us consider

h.. =1 -
e (1.72)

ww_:d._,_mﬂﬂn :&. result 2). £,a,, is @ pseudo-tensor of order 5. Taking m=j, n=k
what {1.72) _.w “_ﬂn_,_._n_o._._o:,mﬁo_ order unity o pseudo-vector, which is therefore
i : actor of § 15 a mere convenience. Writing n”E the components

© Sec. 1.6] Proper tensors and pseudo-tensor

of (1.72) fully gives S
a* = 46,2385 + ) 05, = 34,
;" = §eay + Yo aiyy =a,,,

{1.73)

» ;
ay* = {6328, + n__h:_"_: =d,;.

Thus we can make the following statement,

The three components of a skew-symmetri
3 ; ctric second-order : ;
components of a pscudo-vector. proper lensor are the

In particular, the three components of the veclor SrodUsL N e whore b
components b, and e has components ¢, ure v WiRre' has

[(bac3 = byea), (byey = byey), (byey — by, ).

: ,_.___..”ﬁ are the components a;; of a skew-symmetric proper tensor of the second order
where |

ﬁ: el munn_wl &.L..-._. = IE...T

0 ay, a,
a3y _U flay |

a4y dyy c._

This means that b x ¢ is not a proper vector although, of course, if we adhere to
_._E__.zwua..d frames. then no difference emerges between it and a proper vector. To
illustrate the difference further, if the transformation matrix A = [ —4,,], then, for the

&1‘ - ﬁ:_....-_q i ml._-_ ==

ie. in the new frame the components of b are [ =y, —bz, =hy]. Similarly, those of

his transformation, whercas
that, in defining b x €.
is nol necessary for a

uniltered under
sign. 1t will be EE__E.
ation from b to ¢, This

" 1¢. the components of b x ¢ remain
~ those of b and ¢ undergo changes of
: We had 1o stipulate a right-handed rot
" Proper vector. Then we have the following:
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tor product b x ¢ may be regarded cither as a proper .mwoi-mmaan:_a
1 Hu_“naﬂﬂ_ no__“_ﬂona:: ;= byg;— byci-of as.a pseudo-vector with components
ﬂ: 1 L}

ﬁ-.l = wh....?.n»_-.n__._

1.7 ROTATION ABOUT A FIXED LINE
are the axes of a right-handed tri-rectangular frame and a fixed line

In Fig. 1.1, Ox, . , I
_na__uw_ O is specified in direction by the unit vector n=ng (i=1,2,3). A rigid

Fig. L1

body type of rotation takes place about the fixed line through an angle  so that
P(x;) in the body travels to P'(x,"). Then

OF =0OF +PN + NP (1.74)
Where PM and P'M are both perpendicular to m so that PMP' = ¢, PM = P'M and

P'N is perpendicular to PM. We denote OP by rand OP” by r' and we first find r’
m terms of r, n and n x r. We have

%W%l%mq?:!lqnu?&;

and so

PN —,
= “pm M == cosyir-ap —p), (1.75)

.18 an jsotropic tensor of the
- lransformations of orthogonal axes,

Sec. 1.8] Isotropic tensors
27

Next, NP is at right angles to both v and n and vxn is 4
NP . ie —rxnis such a vector. Since v x n| = pMm
(n % r)/PM and so

veclor in the direction
« the unit vector in NP is

R
Pl =4
N Bk mxr)=siny(nxr) (1.76)

substituting (1.75) and (1.76) into (1.74) gives
r'=rcos ¥+ (1 —cos y)(r-njn + (sin e (1.77)
Equating the ith components in (1.77) gives
x/=x;co5f + (1 —cos Yedmnx + sin £l Xy
Since & Xy = £ajfeX; = — & X, the last form may be written
X = dyX;, (1.78)

where

a; = cos i &;; + (1 —cos ¥ inn, — sin f gm, (1.79)

When an infinitesimal rotation is carried out, ¥ is small and, to a first order of
approximation, cos ¥ = 1 and sin ¢ = . Thus transformation now approximates to

Xp=X; + 535, (1.80)
S = Yepny.

Clearly, s,, is a skew-symmetric pscudo-tensor of the second order.
The solution to (1.80) for the determination of the axis of rotation is uniquely

—dn2

Ag=—0r-

— 833 —53

_.T \ ny= "

n,=

il v

L ; o icity theor
The case of infinitesimal rotations is of great importance in lincar Aoy .

18 ISOTROPIC TENSORS _
into itsell under orthogonal rotation of

An isotropic tensor is one which transforms <hows that the Kronecker delta

B 20 korjens e o na:mm”uwhan uﬁhmﬂ_._‘_mﬂmo for specifically :E:.E:._.mw
(1.70) shows that the third-order pseudo-lenso
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£, is isotropic. Scalars are also isotropic, but mqm_.oz_n_._._ﬁ_._mo,a. which are veciorg,
h,” not isotrapic since only those vectors parallel to the axis of rotation remy;,,
1 i rotation.

__.._,_d”u.ﬂ. Ha___ Hﬂn_whgqnuaﬁ to examine the special case of m.wa:oumn tensors of g, .
fourth order which leature in the theory of nnqu_._._._...m__u__n Bnn_,_m_ We seek (he most
general fourth-order tensor of the form ¢y, E_:n: 15 1sotropic under the rotations
specified by (1.78). Its appropriate transformation law becomes

Cijpr = By 040C gy (181 )

involving four successive finite rotations of the kind considered in the [ag
(Lik hrsnn=121)
When we rotate the axes through = about the xy axis, (1.79) shows that

section

ay=—0,4+2nn,.
For this rotation, n, =0 = ny. ny=1 and the only non-zero components of g;; are
any=-la,= —Lay=1.

Substituting into (1 81) EIVes ¢ = T Cip O €y =0, in the following cases.

(1) Any three of the indices equal to 1 and the other to 3.
(2) Any three of the indices equal to 2 and the other to 3.
(3) Anytwo ol the indices equalto 1, another equal to 2 and the fourth equal to 3.
{4) Any two of the indices equalto 2, another equalto 1 and the fourth equal to 3.

; ) making rotations of x about the x, and X, axes. So
or B_n_zcnm through n about the three coordinate axes the only non-zero components
that arise are those with four indices equal or equal in pairs.

Now consider 2 rotation of the axes thro .
\ ” axes. Equation
(1.79) shows that now rough n/2 about the Ly -aAxes. Equati

We obtain similar results on

@i =nmn;—£an,,

withn, =0 = M. Ay = 1. Then the only non-zero components are

fa=-la;=14y,=1

Direct substitution into (1.31) shows that

Ci111 =Ca335,

i € c » € 3 € 132,
ﬁ:uu nuu 1133 123 LRI 3322

Cizniz=cy, c
iy Craa=cy4,,, €313 = €333,

iz =c
15Cr112s ﬁ_.:_unwuuf nu:unnu..:u_

Sec. 1.3] Isotrapic tensors

Similar results arise for rotatjons through 7/
collect together these results in the following

: form. T ; . .
all unequal and there is no summation, Thyg, 1< tdbee

PIs i, j k :
ughout, j, j, ki=1, u:w,__ A h e

Ciiti = Cjjjj
Ciigy = Ciimk = Cipjj = Cppq,
Cujtj = Comik = Cypy; = Cyyyy, {1.82)

Cigji = Cini = €155 = Cpppye
All other components are zero. The most eeneral solution of (1.82) i

i = Adydy + tm..w&._; + _.__m_._.m...i + K [1.83)

where A, u, v, k are proper scalars and 8 =1 when all four indices are equal and
otherwise zero.

If we now carry out a small rotation represented by

a@;=0d,;+3s

ijr .

where 5; is a skew-symmetric tensor of the second order and is of the first order in
small quantities, as defined by (1.80), then substituting into (1.81) and retaining only
the first-order terms gives

Cijit = (870,,0,61, )C e
+ (8050004, + 81,584 B1n + 81,050, 00 + 8105 0uuS1)0mn 4

= Crpur + SipCojin + 5jCisis T SkiCijit + Seanlijta + 07 s

SCoppr + SpCrar + SpCigur T Sintizn = 0.

Putting i=2, j=k=1I=1 and using s, = —5;; we find that

=0
53,00 11T 5 sCan T 5ufin + 51aC211n

+53nan’
; Sp2fi21 T3
ﬂhu_.h._:_+hmwnm:_._+Am_nﬁu~:+v.—unum._w’+h 1

+ ($12€2112 + 513€2113) =0,
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ie.

i =Cun eunthuy
on USING €353 = €231y = €131 = 2133 =0-O0n substituting the appropriate forms for

the ¢ values given by (1.83) into the above expression for ¢, ,,, we obtain
Adptvir=i+puty,

and so (1.83) reduces to
Coa = A8y By + ududy + vdd . (1.84)

This is the most general isotropic tensor of the fourth order.

In applications such as arise in studying the mechanics of deformable media, ¢,
is symmetric in the pairs of indices (i, j); (k, 1) and the components A, u, v are all
constants, When we use ¢, = ¢, in association with (1.84), we obtain

(6 = ¥} By — d,8,) = 0.

The monc_a factor is not generally zero. Putting i=1 =k, j = 2 = I, this factor is unity.
Hence, it is generally true that u = v and (1.84) simplifies to the form

n_..t._. = L&:mﬁ + ._h_..&_.mm.l + %..Lm._#ﬁk

1.9 DYADICS

Ww.“a”nﬂuh_. nn.vo:ﬂio vectors with components b, and ¢;, respectively. Their scalar

b et __m_ﬂ, ¢ _q___.nn_. product byc;. The quantity be is the indefinite product of the
+ T8 referred to as a dyadic. Letting D denote this dyadic, we have

D= Dyee;= bicee, (1.86)
where nw_.n?mu_ is a right-handed triad of unit
convention on repeated subscripts is used Thus
which are the components of the dyadic c }:w_
on the particular system :
which is independent of

vectors. In (1.86) the summation
D involves nine scalar quantities D,
; ough their numerical values depend
of coordinates employed, the dyadic D has a significance

a i -
3 x 3 matrix 0¥ coordinate system. Associated with the dyadic is the
Dy, D, D,
(Dyl=|Dy Dy, b, (187
bu_ _..L.....uu bwu ’

Sec. 1.9] Dyadics 31

and, from the definition of D, the reader will see that the elements of the matrix w;
D are also the elements of a second-order tensor. The determinant of D is

D4y U_u Dy,
det D=D;; Dy; Dy, (1.88)
Uu_ Uuu .Uuu

whose value can be shown to be an invariant, i.e. independent of the choice of
coordinate system employed,

The transpose D' of D is the dyadic obtained by interchanging the order of the
unit vectors. Thus

D'= Dijee,=Djee, (1.89)
remembering that i and j are merely dummy suffices.
A dyadic is said to be symmetric if D' = D, which is equivalent to

Dy=D; (i.j=1,2,3). (1.90)

A symmetric dyadic thus possesses only six independent components and any
symmetric dyadic D) can be expressed as

D =D& &, + D:§:§; + D388, (1.91)

where (&, &, &) are the three mutually perpendicular unit eigenvectors of the
symmetric dyadic D. The three scalars Dy, D,, D, are the cigenvectors of D. The
reader will observe that the problem of finding the eigenvalues and cigenvectors m&
D is equivalent to finding the same quantities for the aw._a_dn_in matrix Hb:p. or, in
other words, expressing [D,;] in diagonal form. A dyadic D is skew symmetric if

D' = —D. (1.92)

Any dyadic can be uniquely expressed as the sum of a symmetric and skew-
symmetric dyadic as follows:

D=4{D+D")+}D-D"),

_ sa i ST is skew
since the first term on the right-hand side is symmetric while the second term is ske

symmetric.

A particularly important dyadic is the idemfactor or unit dyadic I, defined by

(1.93)
I=35;e¢,
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states that

Tw.uu v-DdV (1.106)
5 ¥

osed surface bounding the volume ¥ and dS is the vector areal element

‘here Sisacl ;
o rection points along the normal directed out of the volume V. Thig

of § whose di
follows since

d
v.DdV=| e— DudV

¥ v 0x

—J nmn_b-.n ds

using the divergence theorem for vectors applied to the vector A = De; with the unit
normal to § given by n = l,e;. However,

ﬂm.-._.._..u_...w =n-D

and thus
dS:-D= | V.- DdV.

Since, in general, dS-D £ D-dS, the correct ordering of the vectors and dyadic in
the theorem must be adhered to.

PROBLEMS 1

(1) Establish the following vector identitjes:

hﬂ x 7-3 x .—: = Aﬂ-nw?.ﬂ_.. - Au.a—vn—u‘n_“
(@axb)x(cxd)=[c,d alb- [b¢.dJa=[d,a blc—[a b c)d

{2) Establish the following results:

curl(pA) = ¢ curl A + (erad ¢) x A
curl{A x Bj=AdivB - Bdjy A+ (B-grad)A — (A -grad)B.
Evaluate curl(a x r/r"), where

ais i -
vector of a point, and r - . 4 constant vector, r = (x, y, z) is the position

Problems 1 35

{3) Prove from first principles that
nx Vds=qpVdr,

where V is a single-valued differentiable scalar function of position, ndS is a
vector element of an open surface (assumed to be suitably simple) and dr is a
vector element of the closed curve bounding the surface.

{4) A given vecloruis a continuous and differentiable function of position in a simply
connected region D. Show that [ u-ds along a path between any two points in
D isindependent of the path if, and only if, curl u = D everywhere in D. (Theorems
quoted in the proofs should be stated clearly but need not be proved.)
If r= xi + yj + zk, determine which of the following vector functions salisly
the condition in the given domains.

{a) r"r in the whole space, where n >0, r= _q_
(b) r x k in the whole space.
k )
ic) .M.xl.u in the region x* + =1, x> 0.
x4y

Where appropriate, evaluale the line integral between the points whose position
vectors are a and b.

{5) (a) Assuming the divergence theorem, prove Green's theorem that

J
;. .Eq...:ﬁcﬂ:;%u&ﬁ =
T 3 C

Given two single-valued functions of positions, U and ¥, whose second
partial derivatives are continuous in a simply connected volume r and on its
boundary surface S, show that, il U and V are harmonic in t, and if

v. ds.

= |

au  av
— =—on §,
én  dn

then U — ¥ is constant in 1.
{b) Using spherical polar coordinates, find a harmonic function U, finite at the

origin, such that

oY . 1 —3cos? 0
ar
on the spherical surface r=2.

(6) The quantities ¢ and A, respectively, are scalar and vector functions of position
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within a simply connected volume ¥ bounded by a closed surface 5. Show that
_. ¢pdS= | grad ¢ dV.
s v

AxdS=—| curlAdV.
5 ¥

Show thal, il a is any constant vector, and r the position vector of the element
dS. then

{rxa)xdS=2Va.

5

(7) Provethat,if ¢(x,, x5, %;) has continuous first derivatives in a volume ¥ bounded
by a surface §. then

£0 gy _‘ ¢ dS,,
3

v O

where dS, is the projection of the element of area d5 on the plane x; = 0. Deduce
that

‘| curl Adr= ﬁ {nx A)dS.
J¥ J5

where A is any vector with continuous first derivatives, and n is the unit vector
along the outward normal to §.
By applying this result to a plane lamina of small uniform thickness, show that

(n-curl A)dS = | A-ds,

5 5

where the plane area § is bounded by the curve s.

{B) A given differentiable scalar function 7 is positive in a domain D. Differentiable
vector functions u, u” satisly V-u'=V-u in D and u,'=u, on S, the boundary
of D. Show that V x {u) =0 is a sufficient condition that

AarwdV z | iueudV
n Fil

for all u'.

. Problems 1 17

given _.E: b, § are wwice differentiable
nd on its bounding surface S, deduce

(9) Assuming the divergence theorem, and
functions of position in a volume 4
Green's theorem

@V~ ¢ Vi)dr=| (¢ V- y Vg)-ds.
£ 5

A solution of the wave equation

¥ 2V
VW =0
dt?

; is of the form @(r)f(1). Prove that, if f{t} is sinusoidal, then ¢ satisfies the equation
Vip+ ki =0,

where k is a constant. Show that [cos(kr)]/r is a solution of this equation in

any region not including the origin, and use Green's theorem to prove that, for
every solution ¢ regular at the origin,

p0)=~—- | | o

1 d Anam___.i cos(kr) &
: vl i) Wi ds
4r Js | dn

r rin

assuming that the origin i1s within §

(10) Establish without assuming the divergence theorem the result

7,
16ds=| % av

5 p EX

where V is a volume enclosed by a surface § whose outward normal has direction
cosines [, m, n and ¢ is a scalar function with continuous denvatives throughout
V.

Hence deduce the volume integral transformations of the surface integrals

nd ds. | n-qds. | nxqds,
1 5

g X

where n is the unit vector along the outward normal. :
Show that the position vector of the centroid of the volume V' is given by

| 2
nre ds,
2V J.
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and use this formula 1o find the position of the centre of mass of the uniform
solid hemisphere r < a, 2 2 0.

{11) Show how to construct a triply orthogonal system of m_.iunﬁ of a<n_=:.o__.3
taking cylindrical coordinates (p, ¢, z) such that pla, f) +iz(a, f) = fla +iff).
where xand /] are real parameters. Show that the system defined by the vector
r = (cos x cosh ff cos 7, cos & cosh fi sin y, sin & sinh fi)
is of this kind. .

Prove thal, in these coordinates, the equation V2V =0 is
a av d av
cosh cosa— |+cosa— | cosh fi— 1)
p dx dz ap aft
r 3 2 u_“\
+n.ou_.. B —cos’ m:m. Y 6.
cosacoshfi  ay?
V (12) Explain the meaning of the statements that w, (i= 1,2) are components of a
L vector and 1, (i, k=1,2) are components of a tensor in two-dimensional

Euclidean space. If u; and v, are vector components and ¢, tensor components,
prove that wp, (with the summation convention) is a scalar, and 1,v, are

components of a vector.
Ilg,, =3, =0, £, =—£;, = 1, prove that the components g, transform as

tensor components under rotations but not under reflections. Prove also that,
il w and v are veclors, the object [v] with components v;, — v, transforms under
rotations as a vector, and the number [ur] = u,v; —u,v, as a scalar,

(13) State the transformation property of the following.

(a) A vector.
(b) A tensor of second order.

Ifu, (i=1,2,3) are components of a vector referred to a set of Cartesian
axes Ox,, Ox,, Ox,, show that

are components of a symmelric tensor. Show that the components of the tensor
referred to any frame of reference may be written

€= wﬁ_q_..._,._o:.ﬂ..: + fig- (i - ¥ ju]

where i, and f are unit vectors in the frame.

{14} Define the alternating tensor £ and prove that

: ﬁ...__uhn.—z_ = m.“\%.‘q - &..f&n.q.

Problems 1 39
A solenoidal field H exerts a force (V x H) x H/4x on unit volume. Show that
the total force on the volume V within a closed surface § is

T, dS,

X

where Tj is a certain symmetric tensor and n; is the unit outward normal to
the surface element dS. Show also that the total couple about a point O is

Eix; Tymy dS,
5

where x; is the position vector relative to O of the element of surface dS.

(15) The gradient of ¢ may be denoted by d¢/r, where r = xi + yj + zk. Thus

(b) < (A-r)=A.
or

o¢ _dp or

© =

{16) Letting & = £,i + £,j+ &:k and g~ i 4 n;j + 13k, we may define

&
+._|m.+= 4

2 _.@
Qﬂ m_ﬁ.u. munmu n.J_.mu

with a similar definition for &/dn Show that, if F=F(&, n), with §= &{x, . 2)
and g = g(x, y, z), then

éF dF 8¢ JF i

— e o —

éx oF éx dn dx

{17) Prove the following.

(2) V-[qq - a’l)=q(V-q)—gx (VX Q)
{b) V-[r x (qq — }q*1)] = [a(V-q) —a x (Vx q)] xF



