Mass spectrometry analysis gives a series of peak height readings for various ion masses. For each peak, the height h_j is contributed to by the various constituents. These make different contributions c_{ij} per unit concentration p_i so that the relation

$$h_j = \sum_{i=1}^n c_{ij} p_i$$

Table 2.2

Peak number	Component				
	CH ₄	C ₂ H ₄	C ₂ H ₆	C ₃ H ₆ _	C ₃ H ₈
1	0.165	0.202	0.317	0.234	0.182
2	27.7	0.862	0.062	0.073	0.131
3		22.35	13.05	4.420	6.001
4			11.28	0	1.110
5				9.850	1.684
6					15.94

holds, with n being the number of components present. Carnahan (1964) gives the values shown in Table 2.2 for c_{ii} .

If a sample had measured peak heights of $h_1 = 5.20$, $h_2 = 61.7$, $h_3 = 149.2$, $h_4 = 79.4$, $h_5 = 89.3$, and $h_6 = 69.3$, calculate the values of p_i based on A and B below mentioned item for each component. The total of all the P_i values was 21.53.

A) By Gauss elimination

B) By Gauss Seidel iteration. Starting vector with all element 0 and then using relaxation factor plot relaxation factor vs iteration number. find Min. iteration number relevant to relaxation factor.