Mass spectrometry analysis gives a series of peak height readings for various ion masses. For each peak, the height h_{j} is contributed to by the various constituents. These make different contributions $c_{i j}$ per unit concentration p_{i} so that the relation

$$
h_{j}=\sum_{i=1}^{n} c_{i j} p_{i}
$$

Table 2.2

Peaknumber	Component				
	CH_{4}	$\mathrm{C}_{2} \mathrm{H}_{4}$	$\mathrm{C}_{2} \mathrm{H}_{6}$	$\mathrm{C}_{3} \mathrm{H}_{6}$	$\mathrm{C}_{3} \mathrm{H}_{8}$
1	0.165	0.202	0.317	0.234	0.182
2	27.7	0.862	0.062	0.073	0.131
3		22.35	13.05	4.420	6.001
4			11.28	0	1.110
5				9.850	1.684
6					15.94

holds, with n being the number of components present. Carnahan (1964) gives the values shown in Table 2.2 for $c_{i i}$

If a sample had measured peak heights of $h_{]}=5.20, h_{z}=61.7, h_{3}=149.2, h_{4}=79.4, h_{5}=89.3$, and $h_{6}=69.3$, calculate the values of p_{i} based on A and B below mentioned item for each component. The total of all the P_{i} values was 21.53.
A) By Gauss elimination
B) By Gauss Seidel iteration. Starting vector with all element 0 and then using relaxation factor plot relaxation factor vs iteration number . find Min. iteration number relevant to relaxation factor.

