
Edition 3.0 July 1995

Fortran 90
A Conversion Course

for Fortran 77 Programmers

Student Notes

S Ramsden, F Lin

Manchester and North HPC T&EC

M A Pettipher, G S Noland, J M Brooke

Manchester Computing Centre, University of Manchester

Manchester and North HPC T&EC i

Acknowledgements

These student notes were developed using the Manchester Computing Centre Fortran
90 course, which was compiled by J M Brooke, G S Noland, and M A Pettipher as a
basis.

Useful comments were also provided by the following: T L Freeman, J Gajjar and A J
Grant (The University of Manchester), and A Marshall and J S Morgan (The Univer-
sity of Liverpool).

Michael Hennecke, University of Kahlsruhe, Germany, provided comprehensive com-
ments which were incorporated in edition 3.0 of the materials.

Fortran 90

ii Fortran 90 Student Notes

Manchester and North HPC T&EC iii

Table of Contents

1 Introduction

1 History
1 Objectives
1 Language Evolution
2 New Features
3 Organisation
3 Coding Convention

5 Sources, Types and Control Structures

5 Source Form
6 Program and Subprogram Names
6 Specifications
7 Strong Typing
7 The Concept of KIND

10 Derived Types
13 Control Statements
17 Exercises

19 Procedures and Modules

19 Program Units
20 Procedures
28 Modules
31 Overloading
35 Scope
36 Program Structure
39 Exercises

41 Array Processing

41 Terminology and Specifications
43 Whole Array Operations
45 Elemental Intrinsic Procedures
45 WHERE Statement
46 Array Sections
48 Array Assignment
48 Recursion
48 Element Location Versus Subscript
49 Zero Sized Arrays

Fortran 77 to Fortran 90

iv Student notes

49 Array Constructors
50 Allocatable Arrays
52 Automatic Arrays
54 Assumed Shape Arrays
56 Array Intrinsics
58 Array Example
60 Exercises

63 Pointer Variables

63 What is a Pointer
63 Specifications
64 Pointer Assignments
66 Pointer Association Status
67 Dynamic Storage
68 Pointer Arguments
69 Pointer Functions
69 Arrays of Pointers
70 Linked List
73 Exercises

75 Input/Output

75 Non-advancing I/O
76 INQUIRE by I/O List
76 NAMELIST
77 New Edit Descriptors
77 New Statement Specifiers
79 Exercises

81 Intrinsic Procedures

81 Elemental Procedures
83 Inquiry Functions
84 Transformational Functions
84 Non Elemental Intrinsic Subroutines:
84 Array Intrinsic Procedures
86 Exercises

87 Redundant Features

87 Source Form
87 Data
88 Control
88 Procedures

Manchester and North HPC T&EC v

88 Input/Output

91 Further Development

91 Fortran 95
92 Parallel Computers

95 References

Fortran 77 to Fortran 90

vi Student notes

Introduction

Manchester and North HPC T&EC 1

1 Introduction

This course covers the transition from the programming language Fortran 77 to the
more modern Fortran 90, and is aimed at Fortran 77 programmers who require an
understanding of the principles and new features of Fortran 90. The course may also
be suitable for programmers familiar with languages such as C or Pascal, but not for
complete beginners in programming.

1.1 History
The programming language Fortran was originally designed for the solution of prob-
lems involving numerical computation. The development of Fortran dates back to the
1950s, the first Fortran system being released in 1957, for the IBM 704.

In the early 1960s, as other manufacturers released Fortran compilers for their own
computer systems, the need to control and standardise Fortran became apparent. A
standards committee was established in 1962, and the first Fortran standard was pub-
lished in 1966.

Unfortunately, the 1966 Standard did not give a clear, precise definition of Fortran. In
the 1970s a new standard was formulated to overcome the problems of Fortran 66 and
incorporate several new features. In 1978, the new standard, Fortran 77, was pub-
lished.

The standards preceding Fortran 90 attempted mainly to standardise existing exten-
sions and practices. Fortran 90, however, is much more an attempt to develop the lan-
guage, introducing new features using experience from other languages.

The next Fortran revision is expected within the next 10 years.

1.2 Objectives
The objectives of the new Fortran 90 standard were:

• to modernise the language in response to the developments in language design
which have been exploited in other languages.

• to standardise vendor extensions such that an efficient portable language is pro-
vided.

• to improve the safety of programming in the language and to tighten the con-
formance requirement, such that the risk of error in standard code is reduced.

• to keep compatible with Fortran 77 by adopting a language evolution method
such that the vast investment in Fortran 77 code is preserved.

1.3 Language Evolution
Fortran 90 is a superset of Fortran 77, and so all standard Fortran 77 programs should
run. To prevent the language growing progressively larger, however, as new revisions

Fortran 90

2 Fortran 90 Student Notes

are produced, the standards committee has adopted a policy of removing obsolete
features.

This procedure adopted involves the inclusion of two lists with each new standard.
One list contains the deleted features, and the other contains the obsolescent features.
The obsolescent list consists of features which are considered to be redundant and
may be deleted in the next revision. A feature must appear on the obsolescent list
before it can be deleted, thus providing a period of notice of at least one revision cycle.

Fortran 90 contains no deleted features, but contains the following obsolescent fea-
tures which may be removed at the next revision.

• Arithmetic IF

• REAL and DOUBLE PRECISION DO variables and control expressions

• Shared DO termination, and DO termination on a statement other than on a CON-

TINUE or an END DO statement

• ASSIGN and assigned GOTO statements

• Assigned FORMAT specifiers

• Branching to END IF from outside IF block

• Alternate RETURN

• PAUSE statement

• H edit descriptor

1.4 New Features
The following major new features are included in Fortran 90:

• Array processing

• Dynamic memory allocation, including dynamic arrays

• Modules

• Procedures:

• Optional/Keyword Parameters

• Internal Procedures

• Recursive Procedures

• Pointers

Other new features include:

• Free format source code

• Specifications/IMPLICIT NONE

• Parameterised data types

• Derived types

• Operator overloading

• CASE statement

• EXIT and CYCLE

• Many new intrinsic functions

• New I/O features

Introduction

Manchester and North HPC T&EC 3

The new features allow the writing of more readable compact code, resulting in more
understandable modular programs with increased functionality. Numerical portabil-
ity is provided through selected precision, programming errors are reduced by the
use of explicit interfaces to sub-programs, and memory is conserved by dynamic
memory allocation. Additionally, data parallel capability is provided through the
array processing features, which makes Fortran 90 a more efficient language on the
new generation of high performance computers.

1.5 Organisation
These student notes are arranged in the following chapters:

1. Introduction.
2. Sources, Types and Control Structures.
3. Procedures and Modules.
4. Array Processing.
5. Pointer Variables.
6. Input/Output.
7. Intrinsic Procedures.
8. Redundant Features.
9. Further Development.

Where appropriate, exercises are included at the end of each chapter. Source code of
example programs and solutions to exercises are all available on line. Program names
appearing in parenthesis are solutions to exercises.

Fortran 90 references and further sources of information are provided in the Resource
List supplied with the course material. Additionally, the compiled resource list is
available on the World Wide Web via the following URL:

http://www.hpctec.mcc.ac.uk/hpctec/courses/Fortran90/
resource.html

1.6 Coding Convention
In these student notes code is in this font, for example:

! this is code

The coding convention followed throughout the student notes is:

• All keywords and intrinsic function names are in capitals; everything else is in
lower case.

• The bodies of program units are indented by two columns, as are INTERFACE

blocks, DO-loops, IF-blocks, CASE-blocks, etc.

• The name of a program, subroutine, or function is always included on its END

statement.

• In USE statements, the ONLY clause is used to document explicitly all entities
which are actually accessed from that module.

• In CALL statements and function references, argument keywords are always
used for optional arguments.

Fortran 90

4 Fortran 90 Student Notes

Sources, Types and Control Structures

Manchester and North HPC T&EC 5

2 Sources, Types and Control
Structures

2.1 Source Form
Fortran 90 supports two forms of source code; the old Fortran 77 source code form
(now called fixed form), and the new free form. Using free source form, columns are no
longer reserved and so Fortran statements can now appear anywhere on a source line.
The source line may contain up to 132 characters.

The character set now includes both upper and lower case letters and the underscore.
A good convention is that the words which are not in your control are in upper case
and names which you invent yourselves, such as variable names, are in lower case.

Identifier names can consist of between 1 and 31 alphanumeric characters (including
the underscore), the only restriction being that the first must be a letter. Remember
that the use of sensible names for variables helps readability.

Fortran 90 introduces new symbols, including the exclamation mark, the ampersand,
and the semicolon, and the alternative form of relational operators. These are dis-
cussed in the following paragraphs.

The exclamation mark introduces a comment. A comment can start anywhere on a
source line and thus can be placed alongside the relevant code. The rest of the line
after the ! is ignored by the compiler.

REAL :: length1 ! Length at start in mm (room temperature)
REAL :: length2 ! Length at end in mm (after cooling)

The ampersand character, &, means ‘continued on the next line’. Usually you will
arrange the line break to be in a sensible place (like between two terms of a compli-
cated expression), and then all that is needed is the & at the end of all lines except the
last. If you split a string, though, you also need an ampersand at the start of the con-
tinuation line.

loggamma = f + (y-0.5)*log(y) - y + 0.91893853320 + &
(((-0.00059523810*z + 0.00079365079)*z - &
0.00277777778)*z + 0.08333333333)/y

WRITE(*,’UNIVERSITY OF MANCHESTER DEPARTMENT&
& OF THEORETICAL STUDIES’)

The semicolon is used as a statement separator, allowing multiple statements to
appear on one line. The use of multiple-statement lines can, however, produce
unreadable code, and should therefore be used only for simple cases, for example:

a = 2; b = 7; c = 3

Fortran 90

6 Fortran 90 Student Notes

Alternative forms of the relational operators are now provided:

.LT. or <

.LE. or <=

.EQ. or ==

.NE. or /=

.GT. or >

.GE. or >=

2.2 Program and Subprogram Names
All programs and subprogram have names. A name can consist of up to 31 characters
(letters, digits, or underscore), starting with a letter.

Using square brackets to signify optional items, the syntax of the PROGRAM and END

statements in Fortran 90 is of the form:

PROGRAM test
...
...

END [PROGRAM [test]]

where test is the name of the program. The END statement may optionally be any of:

END
END PROGRAM
END PROGRAM test
END PROGRAM TEST

If the program name is present then the word PROGRAM must also be present, and the
name must match that in the PROGRAM statement (but case is not significant).

The same syntax applies for other program elements, such as FUNCTION or MODULE.

2.3 Specifications
Fortran 90 allows an extended form of declaration, in which all the attributes of a par-
ticular entity may be declared together.

The general form of the declaration statement is:

type [[, attribute] ... ::] entity list

where type represents one of the following:

INTEGER [([KIND=]kind-value)]
REAL [([KIND=]kind-value)]
COMPLEX [([KIND=]kind-value)]
CHARACTER [(actual-parameter-list)]
LOGICAL [([KIND=]kind-value)]
TYPE (type-name)

and attribute is one of the following:

PARAMETER
PUBLIC
PRIVATE
POINTER
TARGET
ALLOCATABLE

Sources, Types and Control Structures

Manchester and North HPC T&EC 7

DIMENSION(extent-list)
INTENT(inout)
OPTIONAL
SAVE
EXTERNAL
INTRINSIC

For example, it is now possible to initialize variables when they are declared, so there
is no need for a separate DATA statement:

REAL :: a=2.61828, b=3.14159
! two real variables declared and assigned initial values

INTEGER, PARAMETER :: n = 100, m = 1000
! two integer constants declared and assigned values

CHARACTER (LEN=8) :: ch
! character string of length 8 declared

INTEGER, DIMENSION(-3:5,7) :: ia
! integer array declared with negative lower bound

INTEGER, DIMENSION(-3:5,7) :: ia, ib, ic(5,5)
! integer array declared using default dimension

2.4 Strong Typing
For backward compatibility, the implicit typing of integers and reals by the first char-
acter is carried over, but the IMPLICIT statement has been extended to include the
parameter NONE. It is recommended that the statement

IMPLICIT NONE

be included in all program units. This switches off implicit typing and so all variables
must be declared. This helps to catch errors at compile time when they are easier to
correct. The IMPLICIT NONE statement may be preceded within a program unit only
by USE and FORMAT statements.

2.5 The Concept of KIND
In Fortran 90 each of the five intrinsic types REAL, INTEGER, COMPLEX, CHARACTER and
LOGICAL,has an associated non negative integer value called the kind type parameter.
A processor must support at least two kinds for REAL and COMPLEX, and one for INTE-
GER, CHARACTER and LOGICAL.

KIND values are system dependent. However, there are intrinsics provided for enquir-
ing about and setting KIND values, and these allow the writing of portable code using
specified precision.

2.5.1 Real Values

The kind type parameter associated with REAL variables specifies minimum precision
and exponent range requirements. If the kind type parameter is not specified explic-
itly then default real is assumed. The assumption of default kind type parameter in
the absence of explicit specification is usual for all intrinsic types. The kind value
assigned to default real is, of course, processor-dependent.

A kind value is specified explicitly by including the value in brackets in the type dec-
laration statement. For example:

Fortran 90

8 Fortran 90 Student Notes

REAL(KIND=2) :: a
! a is declared of kind type 2

REAL(KIND=4) :: b
! b is declared of kind type 4

The KIND= is optional and so the above declarations could also be given as:

REAL(2) :: a
REAL(4) :: b

The intrinsic function KIND, which takes one argument of any intrinsic type, returns
the kind value of the argument. For example:

REAL(KIND=2) :: x !x declared of kind type 2
REAL :: y !y declared of default type
INTEGER :: i,j

i = KIND(x) !i=2
j = KIND(y) !j set to kind value of default real

!j is system dependent

The intrinsic function SELECTED_REAL_KIND has two optional integer arguments p

and r (optional arguments will be discussed in more detail later in the course). The
variable p specifies the minimum precision (number of decimal digits) required and r

specifies the minimum exponent range required.

The function SELECTED_REAL_KIND(p,r) returns the kind value that meets, or mini-
mally exceeds, the requirements specified by p and r. If more than one kind type satis-
fies the requirements, the value returned is the one with the smallest decimal
precision. If the precision is not available the value -1 is returned, if the range is not
available -2 is returned, and if neither is available -3 is returned. The use of kind type
together with this function can provide complete portability.

The simplest example of KIND is to replace DOUBLE PRECISION:

INTEGER, PARAMETER :: idp = KIND(1.0D)
REAL(KIND=idp) ::ra

Here, the intrinsic function KIND returns the kind value of DOUBLE PRECISION and
assigns the value to idp. The variable ra is declared as double precision by specifying
KIND=idp. Note that in this case the kind value is system dependent.

In order to declare a real in a system independent way, a kind value associated with a
required precision and exponent range must be specified. To do this, the function
SELECTED_REAL_KIND should be used. For example:

INTEGER, PARAMETER :: i10=SELECTED_REAL_KIND(10,200)
REAL(KIND=i10) :: a,b,c

The real variables a, b and c are declared to have at least 10 decimal digits of precision
and exponent range of at least 10-200 to 10+200, if permitted by the processor.

Constants can also be specified to be of a particular kind. The kind type parameter is
explicitly specified by following the constant’s value by an underscore and the kind
parameter. If no kind type is specified then the type default is assumed. For example:

REAL, PARAMETER :: d = 5.78_2 !d is real of kind type 2
REAL, PARAMETER :: e = 6.44_wp !e is real of kind type wp
REAL, PARAMETER :: f = 2.7 !f is default real

!(system dependent)

Sources, Types and Control Structures

Manchester and North HPC T&EC 9

2.5.2 Integer Values

The intrinsic function SELECTED_INT_KIND is used in a similar manner to
SELECTED_REAL_KIND. The function has one integer argument, r, which specifies the
integer range required. Thus, SELECTED_INT_KIND(r) returns the kind value that can
represent, at least, all the integer values in the range -10r to 10r. If more than one kind
type satisfies the requirement, the value returned is the one with the smallest expo-
nent range. If this range is not available, then the function returns the value -1.

The following example shows the declaration of an integer in a system independent
way, specifying a kind value associated with a required range:

INTEGER, PARAMETER :: i8=SELECTED_INT_KIND(8)
INTEGER(KIND=i8) :: ia,ib,ic

The integer variables ia, ib and ic can have values between -108 to 108 at least, if per-
mitted by the processor.

Integer constants can also be specified to be of a particular kind in the same way as
real constants. For example:

INTEGER, PARAMETER :: short = SELECTED_INT_KIND(2)
! the kind type short is defined
INTEGER, PARAMETER :: linefeed = 10_short
INTEGER, PARAMETER :: escape = 27_short
! constants linefeed and escape of kind type short

2.5.3 Intrinsics

The intrinsic function KIND, discussed in section 2.5.1, “Real Values”, can take an
argument of any intrinsic type. For example:

KIND(0) ! returns the default integer kind
! (processor dependent)

KIND(0.0) ! returns the default real kind
! (processor dependent)

KIND(.FALSE.) ! returns the default logical kind
! (processor dependent)

KIND(’A’) ! gives the default character kind (always 1)

Further intrinsic functions can be seen in the following examples:

INTEGER, PARAMETER :: i8 = SELECTED_INT_KIND(8)
INTEGER(KIND=i8) :: ia
PRINT *, HUGE(ia), KIND(ia)

This prints the largest integer available for this integer type, and its kind value.

INTEGER, PARAMETER :: i10 = SELECTED_REAL_KIND(10,200)
REAL(KIND=i10) :: a
PRINT *, RANGE(a), PRECISION(a), KIND(a)

This prints the exponent range, the decimal digits of precision, and the kind value of
a.

Fortran 90

10 Fortran 90 Student Notes

2.5.4 Complex

Complex data types are built from two reals and so, by specifying the components as
reals with the appropriate kind we could have the equivalent of DOUBLE PRECISION
COMPLEX:

INTEGER, PARAMETER :: idp = KIND(1.0D)
COMPLEX(KIND=idp) :: firstroot, secondroot

2.5.5 Logical

There may be more than one logical kind. For example, on the Salford compiler there
are two: the default kind is one ‘word’ long and has kind value 2, but kind value 1
specifies compression to one byte.

2.5.6 Character

Only one kind is generally available, which maps to the standard ASCII set, but the
language now allows for other kinds to be provided to cater for foreign language
characters.

CHARACTER (LEN=5) :: ’aeiou’
CHARACTER (LEN=5, KIND=1) :: ’aeiou’

For character constants, the kind value precedes the constant (separated by an under-
score):

CHARACTER, LEN=5, PARAMETER :: vowels = 1_’aeiou’

2.6 Derived Types
One of the major advances of Fortran 90 over previous versions is the ability to define
your own types. These are called derived types, but are often also called structures.

Let us define a new type, point, which will be constructed from three values repre-
senting the x, y, and z values in Cartesian space.

TYPE point
REAL :: x, y, z

END TYPE point

We can now declare new variables to be of type point as follows:

TYPE (point) :: centre, apex

Here we have declared two variables, apex, and centre to be of type point. Notice
that the syntax of Fortran 90 doesn’t allow us to say simply:

point :: centre, apex ! Illegal

You have to put the word TYPE. The compiler knows whether we are defining a new
type or are declaring a variable of that type because we put the type name point in
brackets for the declarations of the variables, but not for the type definition.

Each of the components of the variable apex may be referenced individually by
means of the component selector character, %.

Sources, Types and Control Structures

Manchester and North HPC T&EC 11

apex%x = 0.0
apex%y = 1.0
apex%z = 0.0

The value apex%y is a real quantity and the assignment operator (=) is defined for real
quantities. For derived types the assignment is implicitly defined to be on a compo-
nent by component basis, which will usually be what is wanted, so we can say, for
example:

centre = apex

No other operators are defined for our new type by default, however, and we might
not want assignment to do a straight copy (for example, one component might be a
date field and we might want to update it, or check it). This problem is overcome by
overloading the assignment operator. This and the associated problem of defining what
interpretation should be given to other operations on variables of our new type will
be dealt with later in the course.

We can use our new type as a primitive in constructing further more complicated
types:

TYPE block
TYPE (point) :: bottomleftnear, toprightfar

END TYPE block

To refer to the x component of the bottom left corner of a variable firstbrick (say) of
type block, we would need two % signs:

xoffset = firstbrick%bottomleftnear%x

2.6.1 Arrays of a Derived Type

We can declare an array of a derived type:

INTEGER, PARAMETER :: male = 1, female = 0
INTEGER, PARAMETER :: nbefore = 53, nafter = 37

TYPE person
INTEGER :: ident
INTEGER :: sex
REAL :: salary

END TYPE person

TYPE (person), DIMENSION (nbefore) :: group1
TYPE (person), DIMENSION (nafter) :: group2

Here we have declared two arrays, group1, and group2 of type person. If we now say

group1%sex = female

we will set the sex of all the members of our first group to female.

2.6.2 Constants of Derived Types

We can define a constant of a derived type:

TYPE (point) :: origin = point(0.0, 0.0, 0.0)
TYPE (person) :: boss = person(1, male, 100000.0)

Fortran 90

12 Fortran 90 Student Notes

The order of the components must follow the order in the definition. The constants,
such as point(0.0,0.0,0.0) may appear anywhere that a variable of the appro-
priate type may appear.

2.6.3 Derived Type Examples

Define the form of the derived type:

TYPE vreg
CHARACTER (LEN=1) :: year
INTEGER :: number
CHARACTER (LEN=3) :: place

END TYPE vreg

Declare structures of type vreg:

TYPE(vreg) :: mycar1, mycar2

Assign a constant value to mycar1:

mycar1 = vreg(’L’,240,’VPX’)

Use % to assign a component of mycar2:

mycar2%year = ’R’

Define an array of a derived type:

TYPE (vreg), DIMENSION(n) :: mycars

Define a derived type including another derived type:

TYPE household
CHARACTER (LEN=1) :: name
CHARACTER (LEN=50) :: address
TYPE(vreg) :: car

END TYPE household

Declare a structure of type household:

TYPE(household) :: myhouse

Use % to refer to year component:

myhouse%car%year = ’R’

Sources, Types and Control Structures

Manchester and North HPC T&EC 13

2.7 Control Statements
Fortran 90 contains three block control constructs:

• IF

• DO

• CASE

All three constructs may be nested, and additionally may be named in order to help
readability and increase flexibility.

2.7.1 IF Statements

The general form of the IF construct is:

[name:]IF (logical expression) THEN
block

[ELSE IF (logical expression) THEN [name]
block]...

[ELSE [name]
block]

END IF [name]

Notice there is one minor extension, which is that the IF construct may be named. The
ELSE or ELSE IF parts may optionally be named, but, if either is, then the IF and END

IF statements must also be named (with the same name).

selection:IF (i < 0) THEN
CALL negative

ELSE IF (i==0) THEN selection
CALL zero

ELSE selection
CALL positive

END IF selection

For long or nested code this can improve readability.

2.7.2 DO Loop

The general form of the DO loop is:

[name:] DO [control clause]
block

END DO [name]

The END DO statement should be used to terminate a DO loop. This makes programs
much more readable than using a labelled CONTINUE statement, and, as it applies to
one loop only, avoids the possible confusion caused by nested DO loops terminating
on the same CONTINUE statement.

Old style code:

DO 10 I = 1,N
DO 10 J = 1,M

10 A(I,J) = I + J

Fortran 90

14 Fortran 90 Student Notes

Fortran 90 code:

DO i = 1,n
DO j = 1,m

a(i,j) = i + j
END DO

END DO

Notice that there is no need for the statement label at all.

The DO and END DO may be named:

rows: DO i = 1,n
cols: DO j = 1,m

a(1,j) = i + j
END DO cols

END DO rows

One point to note is that the loop variable must be an integer and it must be a simple
variable, not an array element.

The DO loop has three possible control clauses:

• an iteration control clause (as in example above).

• a WHILE control clause (described below).

• an empty control clause(section 2.7.4, “EXIT and CYCLE”)

2.7.3 DO WHILE

A DO construct may be headed with a DO WHILE statement:

DO WHILE (logical expression)

body of loop

END DO

The body of the loop will contain some means of escape, usually by modifying some
variable involved in the test in the DO WHILE line.

DO WHILE (diff > tol)
.
.
.

diff = ABS(old - new)
.
.
.

END DO

Note that the same effect can be achieved using the DO loop with an EXIT statement
which is described below.

2.7.4 EXIT and CYCLE

The EXIT statement permits a quick and easy exit from a loop before the END DO is
reached. (It is similar to the break statement in C.)

Sources, Types and Control Structures

Manchester and North HPC T&EC 15

The CYCLE statement is used to skip the rest of the loop and start again at the top with
the test-for-completion and the next increment value (rather like the continue state-
ment in C).

Thus, EXIT transfers control to the statement following the END DO, whereas CYCLE

transfers control to a notional dummy statement immediately preceding the END DO.

These two statements allow us to simplify the DO statement even further to the ‘do for-
ever’ loop:

DO
.
.
.

IF (...) EXIT
.
.
.

END DO

Notice that this form can have the same effect as a DO WHILE loop.

By default the CYCLE statement applies to the inner loop if the loops are nested, but, as
the DO loop may be named, the CYCLE statement may cycle more than one level. Simi-
larly, the EXIT statement can specify the name of the loop from which the exit should
be taken, if loops are nested, the default being the innermost loop.

outer:DO i = 1,n
middle: DO j = 1,m
inner: DO k = 1,l

.

.

.
IF (a(i,j,k)<0) EXIT outer ! Leave loops
IF (j==5) CYCLE middle ! Omit j==5 and set j=6
IF (i==5) CYCLE ! Skip rest of inner loop,

. ! and go to next iteration

. ! of inner loop

.
END DO inner

END DO middle
END DO outer

2.7.5 CASE Construct

Repeated IF ... THEN ... ELSE constructs can be replaced by a CASE construct, as
can the ‘computed GOTO’. The general form of the CASE construct is:

[name:] SELECT CASE (expression)
[CASE (selector)[name]
block]

.

.

.
END SELECT [name]

The expression can be of type INTEGER,LOGICAL, or CHARACTER, and the selectors
must not overlap. If a valid selector is found, the corresponding statements are exe-
cuted and control then passes to the END SELECT. If no valid selector is found, execu-
tion continues with the first statement after END SELECT.

Fortran 90

16 Fortran 90 Student Notes

SELECT CASE (day) ! sunday = 0, monday = 1, etc
CASE (0)

extrashift = .TRUE.
CALL weekend

CASE (6)
extrashift = .FALSE.
CALL weekend

CASE DEFAULT
extrashift = .FALSE.
CALL weekday

END SELECT

The CASE DEFAULT clause is optional and covers all other possible values of the
expression not included in the other selectors. It need not necessarily come at the end.

A colon may be used to specify a range, as in:

CASE (’a’:’h’,’o’:’z’)

which will test for letters in the ranges a to h and o to z.

2.7.6 GOTO

The GOTO statement is still available, but, it is usually better to use IF, DO, and CASE

constructs, and EXIT and CYCLE statements instead.

Sources, Types and Control Structures

Manchester and North HPC T&EC 17

2.8 Exercises
Derived Types:

1. Run the program vehicle.f90. What difference do you notice in the output of
the two WRITE statements?

2. Run the program circle1.f90. Create a new derived type for a rectangle and
assign and write out the corners of the rectangle. (rectdef.f90)

3. Create a file circle.dat which contains the components of the centre and
radius of a circle so that it can be read by program circle2.f90. Run the pro-
gram.

4. Alter program circle4.f90 so that it prints a circle centred at the origin (0,0)
with radius 4.0.

5. Define a derived type that could be used to store a date of birth in the following
type of format:

15 May 1990

Write a program to test your derived type in a similar manner to the above
examples. (birth1.f90)

6. Modify the derived type in exercise 5 to include a component for a name.
(birth2.f90).

Control Structure:

7. Write a program containing a DO construct which reads numbers from the data
file square.dat, skips negative numbers, adds the square root of positive
numbers, and concludes if the present number is zero (use EXIT and CYCLE).
(sq_sum.f90)

8. Write a program that reads in a month number (between 1 and 12) and a year
number. Use the CASE construct to assign the number of days for that month,
taking leap years into account. (no_days.f90)

9. Write a program that reads in a character string. Use the CASE construct in con-
verting upper case characters to lower case and vice versa, and write out the
new string. (Use IACHAR("a") - IACHAR("A") to determine the difference in
the position in the collation sequence between lower and upper case charac-
ters.) (convert.f90)

Kind Values:

10. Run the program kind_int.f90. Notice how this program uses
SELECTED_INT_KIND to find the kind values for integer variables on this sys-
tem. Modify this program to find the kind values for real variables.
(kind_rl.f90)

11. Run the program mc_int.f90. Notice how this program uses the kind values
of integer variables found in exercise 1, and the numeric intrinsic functions to
find some of the machine constants for this system. Modify this program by
using the kind values of real variables found in exercise 1 and the numeric
intrinsic functions (PRECISION, HUGE, TINY and RANGE) to find some of the
machine constants for this system. (mc_real.f90)

Fortran 90

18 Fortran 90 Student Notes

Procedures and Modules

Manchester and North HPC T&EC 19

3 Procedures and Modules

3.1 Program Units
Fortran 90 consists of the main program unit and external procedures as in Fortran 77,
and additionally introduces internal procedures and modules and module proce-
dures. A program must contain exactly one main program unit and any number of
other program units (modules or external procedures).

A module exists to make some or all of the entities declared within it accessible to
more than one program unit. A subprogram which is contained within a module is
called a module procedure. A subprogram which is placed inside a module proce-
dure, an external procedure, or a main program is called an internal procedure.

The following diagram illustrates the nesting of subprograms in program units:

Module
procedures

Main Program

External
procedure

Module

Internal
procedures

Fortran 90

20 Fortran 90 Student Notes

The form of the program units and procedures is summarised below.

Main program:

[PROGRAM program_name]
[specification-statements]
[executable-statements]

[CONTAINS
internal procedures]

END [PROGRAM [program_name]]

Module:

MODULE module_name
[specification-statements]
[executable-statements]

[CONTAINS
module procedures]

END [MODULE [module_name]]

External procedures:

[RECURSIVE] SUBROUITNE subroutine_name(dummy-argument-list)
[specification-statements]
[executable-statements]

[CONTAINS
internal procedures]

END [SUBROUTINE [subroutine-name]]

or

[type] [RECURSIVE] FUNCTION function_name &
(dummy-argument-list) [RESULT(result_name)]
[specification-statements]
[executable-statements]

[CONTAINS
internal procedures]

END [FUNCTION [function-name]]

Module procedures have exactly the same form as external procedures except that the
word SUBROUTINE or FUNCTION must be present on the END statement.

Internal procedures also must have the word SUBROUTINE or FUNCTION present on the
END statement:

[RECURSIVE] SUBROUTINE subroutine_name(dummy-argument-list)
[specification-statements]
[executable-statements]

END SUBROUTINE [subroutine_name]

[type] [RECURSIVE] FUNCTION function_name &
(dummy-argument-list) [RESULT (result_name)]
[specification-statements]
[executable-statements]

END FUNCTION [function_name]

3.2 Procedures
Procedures may be subroutines or functions. Self-contained sub-tasks should be written
as procedures. A function returns a single value and does not usually alter the values

Procedures and Modules

Manchester and North HPC T&EC 21

of its arguments, whereas a subroutine can perform a more complicated task and
return several results through its arguments.

Fortran 77 contained only external procedures, whereas in Fortran 90, structurally,
procedures may be:

• Internal - inside a program unit.

• External - self contained (and not necessarily written in Fortran).

• Module - contained within a module.

An interface block is used to define the procedure argument details, and must always
be used for external procedures.

3.2.1 Internal Procedures

Program units can contain internal procedures, which may NOT, however, contain
further internal procedures. That is, nesting of internal procedures is not permitted.

The internal procedures are collected together at the end of the program unit and are
preceded by a CONTAINS statement. For example,

PROGRAM main

IMPLICIT NONE
REAL :: a,b,c

.

.

.
mainsum=add()

.

.

.
CONTAINS

FUNCTION add()
IMPLICIT NONE
REAL :: add !a,b,c,defined in ‘main’
add=a+b+c

END FUNCTION add

END PROGRAM main

Variables defined in the program unit, remain defined in the internal procedure,
unless redefined there. It is good practice to declare all variables used in subprograms
in order to avoid the use of global variables in the wrong context.

IMPLICIT NONE in a program unit is also in effect in all internal procedures it CON-
TAINS. However, it is recommended that IMPLICT NONE is also included in all internal
procedures for both clarity and avoidance of errors.

SUBROUTINE arithmetic(n,x,y,z)

IMPLICIT NONE
INTEGER :: n
REAL,DIMENSION(100) :: x,y,z
 .
 .
 .

CONTAINS

Fortran 90

22 Fortran 90 Student Notes

FUNCTION add(a,b,c) RESULT(sum)
IMPLICIT NONE
REAL,INTENT(IN) :: a,b,c
REAL :: sum

sum = a + b + c
END FUNCTION add

END SUBROUTINE arithmetic

3.2.2 Interface Blocks

In order to generate calls to subprograms correctly, the compiler needs to know cer-
tain things about the subprogram, including name, number and type of arguments. In
the case of intrinsic subprograms, internal subprograms and modules, this informa-
tion is always known by the compiler and is said to be explicit.

However, when the compiler calls an external subprogram, this information is not
available and is said to be implicit. The Fortran 90 interface block provides a means of
making this information available. The general form of the interface block is:

INTERFACE
interface body

END INTERFACE

Note that, unlike other program unit END statements, the END INTERFACE statement
cannot be named.

The interface body consists of the FUNCTION (or SUBROUTINE) statement, argument
type declaration statements, and the END FUNCTION (or END SUBROUTINE) statement.
In other words it is an exact copy of the subprogram without its executable statements
or internal subprograms. For example,

INTERFACE
REAL FUNCTION func(x)

REAL,INTENT(IN) :: x !INTENT is described in the next
END FUNCTION func !section

END INTERFACE

The interface block must be placed in the calling program unit. Note that an interface
block can contain interfaces to more than one procedure.

3.2.3 INTENT

It is possible to specify whether a procedure argument is intended to be used for
input, output, or both, using the INTENT attribute. For example,

INTEGER, INTENT(IN) :: x
REAL,INTENT(OUT) :: y
REAL, INTENT(INOUT) :: Z

If the intent is IN, the argument value may not be changed within the subprogram. If
the intent is OUT, the argument may only be used to return information from the pro-
cedure to the calling program. If the intent is INOUT, then the argument may be used to
transfer information in both directions between the procedure and calling program.

An Example

SUBROUTINE swapreal(a,b)
IMPLICIT NONE
REAL,INTENT(INOUT) :: a,b

Procedures and Modules

Manchester and North HPC T&EC 23

REAL :: temp
temp = a
a = b
b = temp

END SUBROUTINE swapreal

This is used by:

CALL swapreal(x,y)

3.2.4 Keyword Arguments

We are already familiar with keyword arguments in the input/output statements of
Fortran 77:

READ(UNIT=5,FMT=101,END=9000) x,y,z

When a procedure has several arguments, keywords are an excellent way of avoiding
confusion between arguments. The advantage of using keywords is that you don’t
need to remember the order of the parameters, but you do need to know the variable
names used in the procedure.

For example, we could have the following internal function:

REAL FUNCTION area(start,finish,tol)
IMPLICIT NONE
REAL, INTENT(IN) :: start,finish,tol

.

.

.
END FUNCTION area

which could be called by:

a=area(0.0,100.0,0.00001)

b=area(start=0.0,tol=0.00001,finish=100.0)

c=area(0.0,tol=0.00001,finish=100.0)

where a, b and c are variables declared as REAL. All arguments prior to the first key-
word must match — once a keyword is used all the rest must use keywords. Hence it
is not possible to say:

c=area(0.0,tol=0.00001,100.0) !not allowed

Note that an interface is not required in the above example as area is an internal func-
tion, and similarly one would not be required for a module subprogram with key-
word arguments. This is because both have explicit interfaces. In the case of an
external procedure with argument procedures, an interface must be provided.

3.2.5 Optional Arguments

In some situations, not all the procedure’s arguments need be present each time it is
invoked. An argument which need not always be given is known as an ‘optional’
argument. An argument can be given this attribute by specifying it as OPTIONAL in the
type declaration statement. For example,

REAL FUNCTION area(start,finish,tol)

Fortran 90

24 Fortran 90 Student Notes

IMPLICIT NONE
REAL,INTENT(IN),OPTIONAL :: start, finish, tol

.

.

.
END FUNCTION area

This could be called by:

a=area(0.0,100.0,0.010)

b=area(start=0.0,finish=100.0,tol=0.01)

c=area(0.0)

d=area(0.0,tol=0.01)

where a, b, c and d are variables declared as REAL. The intrinsic logical function
PRESENT is used to check for the presence of an optional argument. For example, in
the function example above it may be necessary to both check for the presence of the
variable tol, and set a default if tol is absent. This is achieved as follows:

REAL :: ttol
IF (PRESENT(tol)) THEN

ttol = tol
ELSE

ttol = 0.01
END IF

The local variable ttol is used here as this may be redefined, whereas the argument
tol cannot be changed (as it is INTENT(IN))

As in the case of keyword arguments, if the procedure is external and has any optional
arguments, an interface must be supplied. Thus, if the function in the example above
was external, the following interface block would need to be provided:

INTERFACE
REAL FUNCTION area(start,finish,tol)

REAL,INTENT(IN),OPTIONAL :: start, finish, tol
END FUNCTION area

END INTERFACE

3.2.6 Derived Types as Procedure Arguments

Procedure arguments can be of derived type if the derived type is defined in only one
place. This can be achieved in two ways:

1. the procedure is internal to the program unit in which the derived type is
defined

2. the derived type is defined in a module which is accessible from the procedure.

3.2.7 Procedures as Arguments

Prior to Fortran 90, we would declare a procedure argument as EXTERNAL. In Fortran
90 the procedure that is passed as an argument must either be an external procedure
or a module procedure. Internal procedures are not permitted.

Procedures and Modules

Manchester and North HPC T&EC 25

If the argument procedure is an external procedure, you are recommended to supply
an interface block in the calling program unit. For example, consider the external
function func:

REAL FUNCTION func(x,y)
IMPLICIT NONE
REAL,INTENT(IN) :: x,y
...

END FUNCTION func

Suppose the subroutine area passes func as an argument, then the calling program
unit would contain

...
INTERFACE

REAL FUNCTION func(x,y)
REAL,INTENT(IN) :: x,y
END FUNCTION func

END INTERFACE
...
CALL area(func,start,finish,tol)

3.2.8 RESULT Clause for Functions

Functions can have a RESULT variable. The result name that will be used within the
function must be specified in brackets after the keyword RESULT at the end of the
function statement. For example,

FUNCTION add(a,b,c) RESULT(sum_abc)
IMPLICIT NONE
REAL,INTENT(IN) :: a,b,c
REAL :: sum_abc
 sum_abc = a + b + c

END FUNCTION add

Directly recursive functions, section 3.2.10, “Recursion”, must have a RESULT variable.

3.2.9 Array-valued Functions

A function’s result does not have to be scalar, it may alternatively be an array. Such a
function is known as an array-valued function. The type of an array-valued function
is not specified in the initial FUNCTION statement, but in a type declaration in the body
of the function, where the dimension of the array must also be specified.

FUNCTION add_vec (a,b,n)
IMPLICIT NONE
REAL, DIMENSION (n) :: add_vec
INTEGER, INTENT(IN) :: n
REAL, DIMENSION (n), INTENT(IN) :: a, b

DO i=1,n
add_vec(i) = a(i) + b(i)

END DO
END FUNCTION add_vec

Note that if the array-valued function is external, an interface must be provided in the
calling program.

INTERFACE

Fortran 90

26 Fortran 90 Student Notes

FUNCTION add_vec (a,b,n)
REAL, DIMENSION (n) :: add_vec
INTEGER, INTENT(IN) :: n
REAL, DIMENSION (n), INTENT(IN) :: a, b

END FUNCTION add_vec
END INTERFACE

3.2.10 Recursion

It is possible for a procedure to invoke itself, either directly (i.e. the function name
occurs on the right-hand side of a statement in the body of the function definition) or
indirectly. This is known as recursion. For example,

• A calls B calls A (i.e. indirect), or

• A calls A directly.

This can be made possible by including the keyword RECURSIVE before the proce-
dure’s name in the first line of the procedure. This applies to both subroutines and
functions. A direct recursive function must also have a RESULT variable. This is neces-
sary as the function name is already used within the body of the function as a result
variable, and hence using it as a recursive reference to itself may cause ambiguities in
some cases. Thus a RESULT variable is used, with a name different to the function
itself, and then within the function, any reference to the actual function name is inter-
preted as a recursive call to the function.

The classic textbook example of a recursive function, is the factorial calculation:

RECURSIVE FUNCTION fact(n) RESULT (res)
IMPLICIT NONE
INTEGER INTENT(IN) :: n
INTEGER :: res
IF (n == 1) THEN

res=1
ELSE

res=n*fact(n-1)
ENDIF

END FUNCTION fact

An important application of recursive procedures is where we have a variable
number of DO loops:

DO
DO

DO
.
.
.

END DO
END DO

END DO

For example, suppose we want to write a program called ANOVA to analyse a gen-
eral factorial design. At the time of writing the program we don’t know how many
factors there are. Even Fortran 90 doesn’t allow us to declare arrays with a variable
number of dimensions, and so it is usual for this problem to use a one-dimensional
array and calculate the offset in the program. To calculate this offset we still seem to
need a number of DO loops equal to the number of factors in the model.

Procedures and Modules

Manchester and North HPC T&EC 27

Consider the sub-problem of reading in the initial data. (For reasons specific to the
problem, the array needs to be of length

where each factor will be represented at a specific number of levels.)

Fortran 90 allows us to code this as follows:

SUBROUTINE anova(factors,level,x, ...)
INTEGER,INTENT(IN) :: factors
INTEGER,DIMENSION(:),INTENT(IN) :: level
REAL,DIMENSION(:),INTENT(OUT) :: x

.

.

.
INTEGER :: i,k,n,element
INTEGER,DIMENSION(factors) :: c,istep
n = factors + 1
DO i=1,factors

IF (i == 1) THEN
istep(i) = 1

ELSE
istep(i) = istep(i-1) * (level(i-1) + 1)

END IF
END DO

CALL data
.
.
.

CONTAINS

RECURSIVE SUBROUTINE data
INTEGER :: cn
n = n-1
IF (n == 0) THEN

element = 1
DO k=1,factors

element = element + (c(factors + 1 - k) - 1) * istep(k)
read *,x(element)

END DO
ELSE

DO cn=1,level(factors+1-n)
c(n) = cn ! do-variable must be a simple variable
CALL data

END DO
END IF
n = n + 1

END SUBROUTINE data

END SUBROUTINE anova

3.2.11 Generic Procedures

A powerful new feature of Fortran 90 is the ability to define your own generic proce-
dures so that a single procedure name may be used within a program, and the action
taken when this name is used is dependent on the type of its arguments. This is also
known as polymorphic typing. A generic procedure is defined using an interface

leveli 1+()
i 1=

factors

∏

Fortran 90

28 Fortran 90 Student Notes

block and a generic name is used for all the procedures defined within that interface
block. Thus the general form is:

INTERFACE generic_name
specific_interface_body
specific_interface_body

.

.

.
END INTERFACE

All the procedures specified in a generic interface block must be unambigously differ-
entiated, and as a consequence of this either all must be subroutines or all must be
functions.

For example, suppose we want a subroutine to swap two numbers whether they are
both real or both integer. This would require two external subroutines:

SUBROUTINE swapreal
IMPLICIT NONE
REAL, INTENT(INOUT) :: a,b
REAL :: temp
temp=a
a=b
b=temp

END SUBROUTINE swapreal

SUBROUTINE swapint
IMPLICIT NONE
INTEGER, INTENT(INOUT) :: a,b
temp=a
a=b
b=temp

END SUBROUTINE swapint

This could be invoked with CALL swap(x,y), provided there is an interface block:

INTERFACE swap
SUBROUTINE swapreal (a,b)

REAL, INTENT(INOUT) :: a,b
END SUBROUTINE swapreal
SUBROUTINE swapint (a,b)

INTEGER, INTENT(INOUT) :: a,b
END SUBROUTINE swapint

END INTERFACE

3.3 Modules
A major new Fortran 90 feature is a new type of program unit called the module. The
module is very powerful in communicating data between subprograms and in organ-
ising the overall architecture of a large program.

The module is important for both sharing data and sharing procedures (known as
module procedures) between program units. Modules also provide a means of global
access to entities such as derived type definitions and associated operators. Addition-
ally, using the PRIVATE attribute, it is possible to limit access to entities in a module. A
program may include several different modules, but they must all have a different
names.

The form of a module is:

Procedures and Modules

Manchester and North HPC T&EC 29

MODULE module-name
[specification-statements]
[executable-statements]

[CONTAINS
module-procedures]

END [MODULE [module-name]]

3.3.1 Global Data

In Fortran, variables are usually local entities. Using modules, it is possible for the
same sets of data to be accessible by a number of different program units. For exam-
ple, suppose we want to have access the integers i, j, k and the reals a, b, c in dif-
ferent procedures. Simply place the appropriate declaration statements in a module as
follows:

MODULE globals
REAL, SAVE :: a,b,c
INTEGER, SAVE :: i,j,k

END MODULE globals

Note the use of the SAVE attribute. This allows modules to be used to provide global
data. This simple use of the module is a substitute for the COMMON block used previ-
ously in Fortran 77.

The data is made accessible in other program units by supplying the USE statement,
i.e.

USE globals

The USE statement is non-executable, and must appear at the very beginning of a pro-
gram unit before any other non-executables, and after the PROGRAM, or other program
unit statement. A program unit may invoke a number of different modules by having
a series of USE statements. Note that a module itself may ‘USE’ another module, but a
module cannot invoke itself either directly or indirectly.

The use of variables from a module could potentially cause problems if the same
names have been used for different variables in different parts of a program. The USE

statement can overcome this problem by allowing the specification of a different local
name for data accessed from a module. For example,

USE globals, r=>a, s=>b

Here, r and s are used to refer to the module data items a and b, and so a and b can
be used for something completely different within the program unit. The => symbols
link the local name with the module name.

There is also a form of the USE statement which limits access to certain items within
the module. This requires the qualifier ONLY followed by a colon and an only-list. For
example, only variables a and c can be accessed via the statement:

USE globals, ONLY : a,c

These two facilities can also be combined:

USE globals, ONLY : r=>a

Fortran 90

30 Fortran 90 Student Notes

A program unit may have more than one USE statement referring to the same module.
However, note that a USE statement with ONLY does not cancel out a less restrictive
USE statement.

3.3.2 Module Procedures

Procedures which are specified within modules are known as module procedures.
These can be either subroutines or functions, and have the same form as external pro-
cedures except that they must be preceded by the CONTAINS statement, and the END

statement must have a SUBROUTINE or FUNCTION specified. Note that, unlike external
procedures, module procedures must be supplied in Fortran. There can be several
module procedures contained in one module.

Module procedures are invoked using the normal CALL statement or function refer-
ence, but can only be invoked by a program unit which has invoked, via the USE state-
ment, the module which contains the procedures.

A module procedure may call other module procedures in the same module. The data
declared in the module before the CONTAINS statement is directly accessible to all the
module procedures. However, any items declared within a module procedure are
local and cannot be accessed outside that procedure.

Module procedures can be useful for several reasons. For example, a module which
defines the structure of a particular set of data could also include special procedures
needed to operate on the data, or a module could be used to hold a library of related
procedures.

For example. a module can be used to ‘add’ variables with derived type:

MODULE point_module

TYPE point
REAL :: x,y

END TYPE point

CONTAINS

FUNCTION addpoints(p,q)
TYPE (point),INTENT(IN) :: p,q
TYPE (point) :: addpoints
addpoints%x = p%x + q%x
addpoints%y = p%y + q%y

END FUNCTION addpoints

END MODULE point_module

The main program would contain:

USE point_module
TYPE (point) :: px, py, pz

.

.

.
pz = addpoints(px,py)

3.3.3 Generic procedures

Modules allow arguments of derived type and hence generic procedures with derived
types. Thus it is possible to extend the generic procedure swap introduced in section
3.2.11, “Generic Procedures” to swap two variables of derived type point.

Procedures and Modules

Manchester and North HPC T&EC 31

MODULE genswap
IMPLICIT NONE

TYPE point
REAL :: x, y

END TYPE point

INTERFACE swap
MODULE PROCEDURE swapreal, swapint, swaplog, swappoint

END INTERFACE

CONTAINS

SUBROUTINE swappoint (a,b)
IMPLICIT NONE
TYPE (point), INTENT(INOUT) :: a, b
TYPE (point) :: temp
temp = a
a = b
b = temp

END SUBROUTINE swappoint

SUBROUTINE swapreal
IMPLICIT NONE
REAL, INTENT(INOUT) :: a,b
REAL :: temp
temp=a
a=b
b=temp

END SUBROUTINE swapreal

!similar subroutines for swapint and swaplog
...

END MODULE genswap

3.3.4 Private and Public Attributes

By default, all entities in a module are available to a program unit which includes the
USE statement. Sometimes it is sensible to forbid the use of certain entities to the host
program to force usage of the module routines rather than allow the user to take his
own short-cuts, or to allow flexibility for internal change without the users needing to
be informed or the documentation changed.

This is done by using the PRIVATE statement:

PRIVATE :: sub1, sub2

or, the PRIVATE attribute:

INTEGER,PRIVATE,SAVE :: currentrow,currentcol

3.4 Overloading
Fortran 90 allows operator and assignment overloading, and in these cases an inter-
face block is required. Modules are often used to provide global access to assignment
and operator overloading.

Fortran 90

32 Fortran 90 Student Notes

3.4.1 Overloading Intrinsic Operators

It is possible to extend the meaning of an intrinsic operator to apply to additional data
types. This requires an interface block with the form:

INTERFACE OPERATOR (intrinsic_operator)
interface_body

END INTERFACE

For example, the ‘+’ operator could be extended for character variables in order to
concatenate two strings ignoring any trailing blanks, and this could be put in a mod-
ule:

MODULE operator_overloading
IMPLICIT NONE
...
INTERFACE OPERATOR (+)

MODULE PROCEDURE concat
END INTERFACE
...

CONTAINS
FUNCTION concat(cha,chb)

IMPLICIT NONE
CHARACTER (LEN=*), INTENT(IN) :: cha, chb
CHARACTER (LEN=(LEN_TRIM(cha) + LEN_TRIM(chb))) :: concat
concat = TRIM(cha)//TRIM(chb)

END FUNCTION concat
...
END MODULE operator_overloading

Now the expression ‘cha + chb’ is meaningful in any program unit which ‘USES’ this
module.

Notice in this example the interface block. The procedure defining the operator is in a
module and it is not necessary to have explicit interfaces for module procedures
within the same module. An interface block is required, in this case, which provides a
generic name or operator for a set of procedures and should be of the form:

INTERFACE ...
MODULE PROCEDURE list

END INTERFACE

where list is a list of the names of the module procedures concerned.

3.4.2 Defining Operators

It is possible to define new operators. and this is particularly useful when using
defined types. Such an operator must have a ‘.’ at the beginning and end of the opera-
tor name. For example, in the preceding example .plus. could have been defined
instead of using ‘+’. The operation needs to be defined via a function, which has one
or two non-optional arguments with INTENT(IN).

The following example shows the definition of an operator .dist. which calculates
the straight line distance between two derived type ‘points’. The operator has been
defined within a module and so can be used by several program units.

MODULE distance_mod
IMPLICIT NONE
...
TYPE point

Procedures and Modules

Manchester and North HPC T&EC 33

REAL :: x,y
END TYPE point
...
INTERFACE OPERATOR (.dist.)

MODULE PROCEDURE calcdist
END INTERFACE
...

CONTAINS
...
FUNCTION calcdist (px,py)

IMPLICIT NONE
REAL :: calcdist
TYPE (point), INTENT(IN) :: px, py
calcdist = &
SQRT ((px%x-py%x)**2 + (px%y-py%y)**2)

END FUNCTION calcdist
...

END MODULE distance_mod

The calling program will include:

USE distance_mod
TYPE(point) :: px,py

...
distance = px .dist. py

The power of modules can be seen in the following example, as a way to define a
derived type and all the associated operators:

MODULE moneytype
IMPLICIT NONE

TYPE money
INTEGER :: pounds, pence

END TYPE money

INTERFACE OPERATOR (+)
MODULE PROCEDURE addmoney

END INTERFACE

INTERFACE OPERATOR (-)
MODULE PROCEDURE negatemoney, subtractmoney

END INTERFACE

CONTAINS

FUNCTION addmoney(a,b)
IMPLICIT NONE
TYPE (money) :: addmoney
TYPE (money), INTENT(IN) :: a,b
INTEGER :: carry, temppence
temppence = a%pence + b%pence
carry = 0

IF (temppence>100) THEN
temppence = temppence - 100
carry = 1

END IF
addmoney%pounds = a%pounds + b%pounds + carry
addmoney%pence = temppence

END FUNCTION addmoney

FUNCTION negatemoney(a)

Fortran 90

34 Fortran 90 Student Notes

IMPLICIT NONE
TYPE (money) :: negatemoney
TYPE (money), INTENT(IN) :: a
negatemoney%pounds = -a%pounds
negatemoney%pence = -a%pence

END FUNCTION negatemoney

FUNCTION subtractmoney(a,b)
IMPLICIT NONE
TYPE (money) :: subtractmoney
TYPE (money), INTENT(IN) :: a,b
INTEGER :: temppound, temppence, carry
temppence = a%pence - b%pence
temppound = a%pounds - b%pounds

! IF construct to incorporate any carry required from subtraction
IF ((temppence<0).AND.(temppound>0)) THEN

temppence = 100 + temppence
temppound = temppound - 1

ELSE IF ((temppence>0).AND.(temppound<0)) THEN
temppence = temppence - 100
temppound = temppound + 1

END IF

subtractmoney%pence = temppence
subtractmoney%pounds = temppound

END FUNCTION subtractmoney

END MODULE moneytype

3.4.3 Assignment Overloading

It may be necessary to extend the meaning of assignment (=) when using derived
types.

For example, suppose the variables ax and px are declared as follows:

REAL :: ax
TYPE (point) :: px

and within the program the following assignment is required

ax = px

i.e type point is assigned to type real. Such an assignment is not valid until it has been
defined.

Continuing with this example, suppose we require that ax takes the larger of the x

and y components of px. This assignment needs to be defined via a subroutine with
two non-optional arguments, the first having INTENT(OUT) or INTENT(INOUT), the
second having INTENT(IN) and an interface assignment block must be created.

The interface block required for assignment overloading is of the form

INTERFACE ASSIGNMENT (=)
subroutine_interface_body

END INTERFACE

The assignment definition could be placed in a module, as follows

MODULE assignoverload_mod

Procedures and Modules

Manchester and North HPC T&EC 35

IMPLICIT NONE
TYPE point

REAL :: x, y
END TYPE point
...
INTERFACE ASSIGNMENT (=)

MODULE PROCEDURE assign_point
END INTERFACE

CONTAINS
SUBROUTINE assign_point (ax,px)

REAL, INTENT(OUT) :: ax
TYPE (point), INTENT(IN) :: px
ax = MAX(px%x,px%y)

END SUBROUTINE assign_point
...

END MODULE assignoverload_mod

The main program needs to invoke this module, with the USE statement, and the
assignment type point to type real is now defined and can be used as required:

USE assignoverload_mod
REAL :: ax
TYPE (point) :: px
...
ax = px

3.5 Scope
The scope of a named entity or label is the set of non-overlapping scoping units where
that name or label may be used unambiguously.

A scoping unit is one of the following:

• a derived type definition,

• a procedure interface body, excluding any derived-type definitions and inter-
face bodies contained within it, or

• a program unit or an internal procedure, excluding derived-type definitions, in-
terface bodies, and subprograms contained within it.

3.5.1 Labels

Every subprogram, internal or external, has its own independent set of labels. Thus
the same label can be used in a main program and its internal subprograms without
ambiguity. Therefore, the scope of a label is a main program or a procedure, excluding
any internal procedures contained within it.

3.5.2 Names

The scope of a name declared in a program unit extends from the program unit’s
header to its END statement. The scope of a name declared in a main program or exter-
nal subprogram extends to all the subprograms it contains, unless the name is rede-
clared in the subprogram.

The scope of a name declared in an internal subprogram is only the subprogram itself,
not other internal subprograms. The scope of the name of an internal subprogram,
and of its number and type of arguments, extends throughout the containing program
unit, and therefore all other internal subprograms.

Fortran 90

36 Fortran 90 Student Notes

The scope of a name declared in a module extends to all program units which USE that
module, unless the named entity has the PRIVATE attribute, or is renamed in the host
program unit, or the USE statement has an ONLY qualifier and that named entity is not
in the only-list. The scope of a name declared in a module extends to any internal sub-
programs, excluding those in which the name is redeclared.

Consider the scoping unit defined above:

• Entities declared in different scoping unit are always different, even if they have
the same names and properties.

• Within a scoping unit, each named entity must have a distinct name, with the
exception of generic names of procedures.

• The names of program units are global, so each must be distinct from the others
and from any of the local entities of the program unit.

• The scope of the name of an internal procedure extends throughout the contain-
ing program unit only.

• The scope of a name declared in an internal procedure is that internal procedure.

Names are said to be accessible either by ‘host association’ or ‘use association’:

• Host association - The scope of a name declared in a program unit extends from
the program unit’s header to its END statement.

• Use association - The scope of a name declared in a module, which does not have
the PRIVATE attribute, extends to any program units that USE the module.

Note that both associations do not extend to any external procedures that may be
invoked, and do not include any internal procedures in which the name is redeclared

3.5.3 Example of Scoping Units

MODULE scope1 ! scope 1
... ! scope 1
CONTAINS ! scope 1

SUBROUTINE scope2 ! scope 2
TYPE scope3 ! scope 3

... ! scope 3
END TYPE ! scope 3
INTERFACE ! scope 3

100 ... ! scope 4
END INTERFACE ! scope 3
REAL x, y ! scope 2
... ! scope 2

CONTAINS ! scope 2
FUNCTION scope5(...) ! scope 5

REAL y ! scope 5
y = x + 1.0 ! scope 5

100 ... ! scope 5
END FUNCTION scope5 ! scope 5

END SUBROUTINE scope2 ! scope 2
END MODULE scope1 ! scope 1

3.6 Program Structure
3.6.1 Order of Statements

Within this chapter, several new statements have been introduced. The following
table summarises the order of statements in program units.

Procedures and Modules

Manchester and North HPC T&EC 37

3.6.2 Interface Blocks

In this chapter an interface block has been required in several situations. In summary:

• An interface block is needed when a module or external procedure is called:

• which defines or overloads an operator, or overloads assignment.

• uses a generic name.

• An interface block is needed when an external procedure:

• is called with a keyword and/or optional argument.

• is an array-valued or pointer function, or a character function which is
neither a constant nor assumed length.

• has a dummy argument which is an assumed size array, a pointer or a
target.

• is a dummy or actual argument (in this case an interface block is recom-
mended, not mandatory).

3.6.3 Summary

Using Fortran 77 it was only possible to use a main program unit calling external pro-
cedures, and the compiler had no means of checking for argument inconsistencies
between the procedures. In simple terms, Fortran 90 provides internal procedures
with an explicit interface allowing the compiler to check for any argument inconsist-
encies.

Table 1: Order of Statements

PROGRAM, FUNCTION, SUBROUTINE,
or MODULE Statement

USE Statements

FORMAT
Statements

IMPLICIT NONE Statement

PARAMETER
Statements IMPLICIT Statements

PARAMETER
and DATA
Statements

Derived-type Definitions,
Interface Blocks,

Type Declaration Statements,
and Specification Statements

Executable Statements

CONTAINS Statement

Internal Subprograms
or Module Subprograms

END Statement

Fortran 90

38 Fortran 90 Student Notes

Structured Fortran 90 programs will consist of a main program and modules contain-
ing specifications, interfaces and procedures - external procedures no longer being
required. The introduction of many new features such as derived types, overloading,
internal subprograms and modules make possible the creation of sophisticated For-
tran 90 code.

Procedures and Modules

Manchester and North HPC T&EC 39

3.7 Exercises
1. Write a program that calls a function to sum all of the integers between min and

max. Set min and max to be optional keyword arguments which default to 1
and 10 respectively. (opt_par.f90)

2. Look at program err_main.f90 and err_sub.f90. Compile and run. What is
wrong? Rewrite it in a better way in Fortran 90. (err_sol.f90)

3. Write a recursive function to calculate the nth value of the Fibonacci sequence.
Notice that fib(1)=1, fib(2)=1, fib(i)=fib(i-1)+fib(i-2) i.e. 1, 1, 2, 3, 5, 8, 13, ...
(fibon.f90)

4. Write a program which defines a generic function to return the maximum abso-
lute value of two variables, for real, integer and complex variable types.
(maxabs.f90)

5. Write a module which defines kind values for single and double precision real
variables, and a main program which uses this module and can be changed
from single to double precision by changing a single value. (prec.f90,
prec_mod.f90)

6. Look at the program generic.f90. Modify this program to include a function
for swapping two variables of type (point) by using a module, where ‘point’
is defined with two real variables. (gen_mod.f90, swap_mod.f90)

7. Look at the program money.f90. From these code fragments, construct a mod-
ule that allows you to run the program mon_main.f90. (mon_main.f90,
mon_mod.f90)

8. Write a module which defines a vector type with x and y components and the
associated operators ‘+’ and ‘-’ overloading, and a main program which uses
this module to apply all associated operators overloading to the variables of
derived type vector. (vec_main.f90, vec_mod.f90)

Fortran 90

40 Fortran 90 Student Notes

Array Processing

Manchester and North HPC T&EC 41

4 Array Processing

A major new feature of Fortran 90 are the array processing capabilities. It is possible to
work directly with a whole array or an array section without explicit DO-loops. Intrin-
sic functions can now act elementally on arrays, and functions can be array-valued.
Also available are the possibilities of allocatable arrays, assumed shape arrays, and
dynamic arrays. These and other new features will be described in this chapter, but
first of all it is necessary to introduce some terminology.

4.1 Terminology and Specifications
Fortran permits an array to have up to seven subscripts, each of which relates to one
dimension of the array. The dimensions of an array may be specified using either a
dimension attribute or an array specification. By default the array indices start at 1,
but a different range of values may be specified by providing a lower bound and an
upper bound. For example,

REAL, DIMENSION(50) :: w
REAL, DIMENSION(5:54) :: x
REAL y(50)
REAL z(11:60)

Here, w, x, y and z are all arrays containing 50 elements.

The rank of an array is the number of dimensions. Thus, a scalar has rank 0, a vector
has rank 1 and a matrix has rank 2.

The extent refers to a particular dimension, and is the number of elements in that
dimension.

The shape of an array is a vector consisting of the extent of each dimension.

The size of an array is the total number of elements which make up the array. This may
be zero.

Two arrays are said to be conformable if they have the same shape. All arrays are con-
formable with a scalar, as the scalar is broadcast to an array with the same shape.

Take, for example the following arrays:

REAL, DIMENSION :: a(-3:4,7)
REAL, DIMENSION :: b(8,2:8)
REAL, DIMENSION :: d(8,1:8)
INTEGER :: c

The array a has

• rank 2

• extents 8 and 7

• shape (/8,7/)

Fortran 90

42 Fortran 90 Student Notes

• size 56

Also, a is conformable with b and c, as b has shape (/8,7/) and c is scalar. However, a
is not conformable with d, as d has shape (/8,9/). Notice the use of array constructors
to create the shape vectors - this will be explained later in section 4.10, “Array Con-
structors”.

The general form of an array specification is as follows:

type [[,DIMENSION (extent-list)] [,attribute]... ::] entity list

This is simply a special case of the form of declaration given in section 2.3, “Specifica-
tions”.

Here, type can be any intrinsic type or a derived type (so long as the derived type def-
inition is accessible to the program unit declaring the array). DIMENSION is optional
and defines default dimensions in the extent-list, these can alternatively by
defined in the entity list.

The extent-list gives the array dimensions as:

• integer constants

• integer expressions using dummy arguments or constants

• ’:’ to show the array is allocatable or assumed shape

As before, attribute can be any one of the following

PARAMETER
PUBLIC
PRIVATE
POINTER
TARGET
ALLOCATABLE
DIMENSION(extent-list)
INTENT(inout)
OPTIONAL
SAVE
EXTERNAL
INTRINSIC

Finally, the entity list is a list of array names with optional dimensions and initial
values.

The following examples show the form of the declaration of several kinds of arrays,
some of which are new to Fortran 90 and will be met later in this chapter:

1. Initialisation of one-dimensional arrays containing 3 elements:

INTEGER, DIMENSION(3) :: ia=(/1,2,3/), ib=(/(i,i=1,3)/)

2. Declaration of automatic array logb. Here loga is a dummy array argument,
and SIZE is an intrinsic function which returns a scalar default integer corre-
sponding to the size of the array loga:

LOGICAL, DIMENSION(SIZE(loga)) :: logb

3. Declaration of 2D dynamic (allocatable) arrays a and b. The shape would be
defined in a subsequent ALLOCATE statement:

REAL, DIMENSION (:,:), ALLOCATABLE :: a,b

Array Processing

Manchester and North HPC T&EC 43

4. Declaration of 3D assumed shape arrays a and b. The shape would be taken
from the actual calling routine:

REAL, DIMENSION(:,:,:) :: a,b

4.2 Whole Array Operations
In Fortran 77 it was not possible to work with whole arrays, instead each element of
an array had to be operated on separately, often requiring the use of nested DO-loops.
When dealing with large arrays, such operations could be very time consuming and
furthermore the required code was very difficult to read and interpret. An important
new feature in Fortran 90 is the ability to perform whole array operations, enabling an
array to be treated as a single object and removing the need for complicated, unreada-
ble DO-loops.

In order for whole array operations to be performed, the arrays concerned must be
conformable. Remember, that for two arrays to be conformable they must have the
same shape, and any array is conformable with a scalar. Operations between two con-
formable arrays are carried out on an element by element basis, and all intrinsic oper-
ators are defined between two such arrays.

For example, if a and b are both 2x3 arrays

a = , b =

the result of addition is

a + b =

and of multiplication is

a x b =

If one of the operands is a scalar, then the scalar is broadcast into an array which is
conformable with the other operand. Thus, the result of adding 5 to b is

b + 5 = + =

Such broadcasting of scalars is useful when initialising arrays and scaling arrays.

An important concept regarding array-valued assignment is that the right hand side
evaluation is computed before any assignment takes place. This is of relevance when
an array appears in both the left and right hand side of an assignment. If this were not
the case, then elements in the right hand side array may be affected before the opera-
tion was complete.

The advantage of whole array processing can best be seen by comparing examples of
Fortran 77 and Fortran 90 code:

1. Consider three one-dimensional arrays all of the same length. Assign all the
elements of a to be zero, then perform the assignment a(i) = a(i)/3.1 +
b(i)*SQRT(c(i)) for all i.

Fortran 77 Solution

REAL a(20), b(20), c(20)

3 4 8
5 6 6

5 2 1
3 3 1

8 6 9
8 9 7

15 8 8
15 18 6

5 2 1
3 3 1

5 5 5
5 5 5

10 7 6
8 8 6

Fortran 90

44 Fortran 90 Student Notes

...
DO 10 i=1,20

a(i)=0
10 CONTINUE

...
DO 20 i=1,20

a(i)=a(i)/3.1 + b(i)*SQRT(c(i))
20 20 CONTINUE

Fortran 90 Solution

REAL, DIMENSION(20) :: a, b, c
...
a=0
...
a=a/3.1+b*SQRT(c)

Note, the intrinsic function SQRT operates on each element of the array c.

2. Consider three two-dimensional arrays of the same shape. Multiply two of the
arrays element by element and assign the result to the third array.

Fortran 77 Solution

REAL a(5, 5), b(5, 5), c(5, 5)
...
DO 20 i = 1, 5

DO 10 j = 1, 5
c(j, i) = a(j, i) * b(j, i)

10 CONTINUE
20 CONTINUE

Fortran 90 Solution

REAL, DIMENSION (5, 5) :: a, b, c
...
c = a * b

3. Consider a three-dimensional array. Find the maximum value less than 1000 in
this array.
In Fortran 77 this requires triple DO loop and IF statements, whereas the For-
tran 90 code is:

REAL, DIMENSION(10,10,10) :: a
amax=MAXVAL(a,MASK=(a<1000))

Note the use of the optional MASK argument. MASK is a logical array expression.
Only those elements of a that correspond to elements of MASK that have the
value true take part in the function call. So in this example amax is the value of
the maximum element in a which is less than 1000.

4. Find the average value greater than 3000 in an array.
In Fortran 77 this requires DO loops and IF statements, whereas Fortran 90
code is:

av=SUM(a,MASK=(a>3000))/COUNT(MASK=(a>3000))

Array Processing

Manchester and North HPC T&EC 45

Note in the last two examples the use of the following array intrinsic functions:

MAXVAL - returns the maximum array element value.
SUM - returns the sum of the array elements.
COUNT - returns the number of true array elements.

4.3 Elemental Intrinsic Procedures
Fortran 90 also allows whole array elemental intrinsic procedures. That is, arrays may
be used as arguments to intrinsic procedures in the same way that scalars are. The
intrinsic procedure will be applied to each element in the array separately, but again
arrays must be conformable.

The following are examples of elemental intrinsic procedures:

1. Find the square roots of all elements of an array, a. (Note that the SQRT func-
tion has already been seen in an example in section 4.2, “Whole Array Opera-
tions”.)

b=SQRT(a)

2. Find the string length excluding trailing blanks for all elements of a character
array ch.

length=LEN_TRIM(ch)

4.4 WHERE Statement
The WHERE statement can be used to perform assignment only if a logical condition is
true and this is useful to perform an array operation on only certain elements of an
array.

A simple example is to avoid division by zero:

REAL, DIMENSION(5,5) : ra, rb
...
WHERE(rb>0.0) ra=ra/rb

The general form is

WHERE(logical-array-expression) array-variable=array-expression

The logical-array-expression is evaluated, and all those elements of array-

expression which have value true are evaluated and assigned to array-variable.
The elements which have value false remain unchanged. Note that the logical-

array-expression must have the same shape as the array variable.

It is also possible for one logical array expression to determine a number of array
assignments. The form of this WHERE construct is:

WHERE (logical-array-expression)
array-assignment-statements

END WHERE

or

WHERE (logical-array-expression)
array-assignment-statements

ELSEWHERE

Fortran 90

46 Fortran 90 Student Notes

array-assignment-statements
END WHERE

In the latter form, the assignments after the ELSEWHERE statement are performed on
those elements that have the value false for the logical array expression.

For example, the WHERE construct can be used to divide every element of the array ra

by the corresponding element of the array rb avoiding division by zero, and assigning
zero to those values of ra corresponding to zero values of rb.

REAL, DIMENSION(5,5) :: ra,rb
...
WHERE(rb>0.0)

ra=ra/rb
ELSEWHERE

ra=0.0
END WHERE

4.5 Array Sections
A subarray, called a section, of an array may be referenced by specifying a range of
subscripts. An array section can be used in the same way as an array, but it is not pos-
sible to reference the individual elements belonging to the section directly.

Array sections can be extracted using either:

• A simple subscript.

• A subscript triplet.

• A vector subscript.

4.5.1 Simple Subscripts

A simple subscript extracts a single array element. Consider a 5x5 array, then
ra(2,2) is a simple subscript:

 = ra(2,2)

4.5.2 Subscript Triplets

The form of a subscript triplet is:

[lower bound]:[upper bound][:stride]

If either the lower bound or upper bound is omitted, then the bound of the array from
which the array section is extracted is assumed, and if stride is omitted the default
stride=1 is used.

The following examples show various array sections of an array using subscript tri-
plets. The elements marked with x denote the array section. Let the defined array
from which the array section is extracted be a 5x5 array.

0 0 0 0 0
0 X 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

Array Processing

Manchester and North HPC T&EC 47

 = ra(2:2,2:2); Array element, shape (/1/)

 = ra(3,3:5); Sub-row, shape(/3/)

 = ra(:,3); Whole column, shape(/5/)

 = ra(1::2,2:4); Stride 2 in rows, shape(/3,3/)

4.5.3 Vector Subscripts

A vector subscript is an integer expression of rank 1. Each element of this expression
must be defined with values that lie within the parent array subscript bounds. The
elements of a vector subscript may be in any order.

An example of an integer expression of rank 1 is:

(/3,2,12,2,1/)

An example showing the use of a vector subscript iv is:

REAL, DIMENSION :: ra(6), rb(3)
INTEGER, DIMENSION (3) :: iv
iv = (/ 1, 3, 5 /) ! rank 1 integer expression
ra = (/ 1.2, 3.4, 3.0, 11.2, 1.0, 3.7 /)
rb = ra(iv) ! iv is the vector subscript
! = (/ ra(1), ra(3), ra(5) /)
! = (/ 1.2, 3.0, 1.0 /)

Note that the vector subscript can be on the left hand side of an expression:

iv = (/1, 3, 5/) ! vector subscript
ra(iv) = (/1.2, 3.4, 5.6/)
! = ra((/1, 3, 5/)) = (/1.2, 3.4, 5.6/)
! = ra(1:5:2) = (/1.2, 3.4, 5.6/)

It is also possible to use the same subscript more than once and hence using a vector
subscript an array section that is bigger than the parent array can be constructed. Such
a section is called a many-one array section. A many-one section cannot appear on the
left hand side of an assignment statement or as an input item in a READ statement, as
such uses would be ambiguous.

0 0 0 0 0
0 X 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 X X X

0 0 0 0 0
0 0 0 0 0

0 0 X 0 0
0 0 X 0 0
0 0 X 0 0
0 0 X 0 0
0 0 X 0 0

0 X X X 0
0 0 0 0 0
0 X X X 0
0 0 0 0 0
0 X X X 0

Fortran 90

48 Fortran 90 Student Notes

iv = (/1, 3, 1/)
ra(iv) = (/1.2, 3.4, 5.6/) ! not permitted
! = ra((/1, 3, 1/) = (/1.2, 3.4, 5.6/)

rb = ra(iv) ! permitted
! = ra(/1, 3, 1/) = (/1.2, 3.4, 1.2/)

4.6 Array Assignment
Both whole arrays and array sections can be used as operands in array assignments
provided that all the operands are conformable. For example,

REAL, DIMENSION(5,5) :: ra,rb,rc
INTEGER :: id

.

.

.
! Shape(/5,5/) and scalar
ra = rb + rc*id

! Shape(/3,2/)
ra(3:5,3:4) = rb(1::2,3:5:2) + rc(1:3,1:2)

! Shape(/5/)
ra(:,1) = rb(:,1) + rb(:,2) + rc(:,3)

4.7 Recursion
It is important to be aware of how to achieve recursion in Fortran 90:

For example, the code:

DO i=2,n
x(i) = x(i) + x(i-1)

END DO

is not the same as:

x(2:n)= x(2:n) + x(1:n-1)

In the first case, the assignment is:

x(i) = x(i) + x(i-1) + x(i-2) + ... + x(1)

whereas in the second case the assignment is:

x(i) = x(i) + x(i-1)

In order to achieve the recursive effect of the DO-loop, in Fortran 90 it would be appro-
priate to use the intrinsic function SUM. This function returns the sum of all the ele-
ments of its array argument. Thus the equivalent assignment is:

x(2:n) = (/(SUM(x(1:i)), i=2,n)/)

4.8 Element Location Versus Subscript
The two array location intrinsics MAXLOC and MINLOC return the location of the maxi-
mum and minimum element of the array argument respectively. When arrays have

Array Processing

Manchester and North HPC T&EC 49

been defined with lower bounds not equal to 1, it is important to be aware that these
intrinsics return the element location and not the element subscript. This can be seen
in the following example:

REAL, DIMENSION (1:8) :: ra
REAL, DIMENSION (-3:4) :: rb
INTEGER, DIMENSION (1) :: locmax1, locmax2
REAL :: max1, max2
ra = (/ 1.2, 3.4, 5.4, 11.2, 1.0, 3.7, 1.0, 1.0/)
rb = ra
! To find location of max value

locmax1 = MAXLOC(ra) ! = (/ 4 /)
locmax2 = MAXLOC(rb) ! = (/ 4 /)

! To find maximum value from location

max1 = ra(locmax(1))
! OK because ra defined with 1 as lower bound

max2 = rb(LBOUND(rb) + locmax2(1) - 1)
! general form required with lower bound not equal to 1

4.9 Zero Sized Arrays
If the lower bound of an array dimension is greater than the upper bound, then the
array has zero size. Zero sized arrays follow the normal array rules, and in particular
zero sized arrays must be conformable to be used as operands.

Zero sized arrays are useful for boundary operations. For example,

DO i=1,n
x(i)=b(i)/a(i,i)
b(i+1:n)=b(i+1:n) - a(i+1:n,i)*x(i)
! zero sized when i=n

END DO

4.10 Array Constructors
An array constructor creates a rank-one array containing specified values. The values
can be specified by listing them or by using an implied DO-loop, or a combination of
both. The general form is

(/ array-constructor-value-list /)

For example,

REAL, DIMENSION(6) :: a
a=(/array-constructer-value-list/)

where, for example, array-constructer-value-list can be any of:

(/(i,i=1,6)/)
! = (/1,2,3,4,5,6/)

(/7,(i,i=1,4),9/)
! = (/7,1,2,3,4,9/)

(/1.0/REAL(i),i=1,6)/)
! = (/1.0/1.0,1.0/2.0,1.0/3.0,1.0/4.0,1.0/5.0,1.0/6.0/)

Fortran 90

50 Fortran 90 Student Notes

(/((i+j,i=1,3),j=1,2)/)
! = (/((1+j,2+j,3+j),j=1,2)/)
! = (/2,3,4,3,4,5/)

(/a(i,2:4),a(1:5:2,i+3)/)
! = (/a(i,2),a(i,3),a(i,4),a(1,i+3),a(3,i+3),a(5,i+3)/)

It is possible to transfer a rank-one array of values to an array of a different shape
using the RESHAPE function. The RESHAPE function has the form

RESHAPE(SOURCE,SHAPE,[,PAD][,ORDER])

where the argument SOURCE can be an array of any sort (in this case a rank-one array),
and the elements of source are rearranged to form an array RESHAPE of shape SHAPE. If
SOURCE has more elements than RESHAPE, then the unwanted elements will be
ignored. If RESHAPE has more elements than SOURCE, then the argument PAD must be
present. The argument PAD must be an array of the same type as SOURCE, and the ele-
ments of PAD are used in array element order, using the array repeatedly if necessary,
to fill the missing elements of RESHAPE. Finally, the optional argument ORDER allows
the elements of RESHAPE to be placed in an alternative order to array element order.
The array ORDER must be the same size and shape as SHAPE, and contains the dimen-
sions of RESHAPE in the order that they should be run through.

A simple example is:

REAL, DIMENSION(3,2) :: ra
ra=RESHAPE((/((i+j,i=1,3),j=1,2)/),SHAPE=(/3,2/))

which creates ra=

If the argument ORDER is included as follows

ra=RESHAPE((/((i+j,i=1,3),j=1,2)/),SHAPE= &
 (/3,2/),ORDER(2,1))

then the result would be ra=

4.11 Allocatable Arrays
A major new feature of Fortran 90 is the ability to declare dynamic variables, in partic-
ular dynamic arrays. Fortran 90 provides allocatable and automatic arrays, both of
which are dynamic. Using allocatable arrays, which are discussed in this section, it is
possible to allocate and deallocate storage as required. Automatic arrays allow local
arrays in a procedure to have a different size and shape every time the procedure is
invoked. These are explained in more detail in section 4.12, “Automatic Arrays”

Allocatable arrays allow large chunks of memory to be used only when required and
then be released. This produces a much more efficient use of memory than Fortran 77,
which offered only static (fixed) memory allocation.

An allocatable array is declared in a type declaration statement with the attribute
ALLOCATABLE. The rank of the array must also be specified in the declaration state-
ment and this can be done by including the appropriate number of colons in the
DIMENSION attribute. For example, a two dimensional array could be declared as:

2 3
3 4
4 5

2 3
4 3
4 5

Array Processing

Manchester and North HPC T&EC 51

REAL, DIMENSION(:,:), ALLOCATABLE :: a

This form of declaration statement does not allocate any memory space to the array.
Space is dynamically allocated later in the program, when the array is required, using
the ALLOCATE statement. The ALLOCATE specifies the bounds of the array and, as with
any array allocation, the lower bound defaults to one if only the upper bound is spec-
ified. For example, the array declared above could be allocated with lower bound
zero:

ALLOCATE (a(0:n,m))

The bounds may also be integer expressions, for example:

ALLOCATE (a(0:n+1,m))

The space allocated to the array with the ALLOCATE statement can later be released
with the DEALLOCATE statement. The DEALLOCATE statement requires only the name of
the array concerned and not the shape. For example:

DEALLOCATE (a)

Both the ALLOCATE and DEALLOCATE statement have an optional specifier STAT. The
general form of the statements is:

ALLOCATE(allocate-object-list [,STAT=checkstat])
DEALLOCATE(allocate-object-list [,STAT=checkstat])

where checkstat is a scalar integer variable. If STAT= is present, checkstat is given
the value zero if ALLOCATION/DEALLOCATION was successful, or a positive value if
there was an error. If STAT= is not present and ALLOCATION/DEALLOCATION was
unsuccessful, then program execution aborts.

Allocatable arrays make possible the frequent requirement to declare an array having
a variable number of elements. For example, it may be necessary to read variables,
say nsize1 and nsize2, and then declare an array to have nsize1 x nsize2 elements:

INTEGER n
REAL, DIMENSION(:,:), ALLOCATABLE :: ra
INTEGER :: checkstat

...
READ(*,*) nsize1,nsize2
ALLLOCATE (ra(nsize1,nsize2), STAT = checkstat)
IF (checkstat > 0) THEN
! ... error processing code ...
END IF

...
DEALLOCATE (ra)

Note that both ALLOCATE and DEALLOCATE statements can allocate/deallocate several
arrays in one single statement.

An allocatable array is said to have an allocation status. When an array has been
defined but not allocated the status is said to be unallocated or not currently allocated.
When an array appears in an ALLOCATE statement then the array is said to be allocated,
and once the array has been deallocated it is said to be not currently allocated. The
DEALLOCATE statement can only be used on arrays which are currently allocated, and
similarly, the ALLOCATE statement can only be used on arrays which are not currently
allocated. Thus, ALLOCATE can only be used on a previously allocated array if it has
been deallocated first.

Fortran 90

52 Fortran 90 Student Notes

It is possible to check whether or not an array is currently allocated using the intrinsic
function ALLOCATED. This is a logical function with one argument, which must be the
name of an allocatable array. Using this function, statements like the following are
possible:

IF (ALLOCATED(a)) DEALLOCATE(a)

or

IF (.NOT.ALLOCATED(a)) ALLOCATE(a(5,20))

An allocatable array has a third allocation status, undefined. An array is said to be
undefined if it is allocated within a procedure and the program returns to the calling
program without deallocating it. Once an array is undefined, it can no longer be used.
Hence it is good programming practice to deallocate all arrays that have been allo-
cated. There are, however, two other ways around this problem. Firstly, an allocatable
array can be declared with the SAVE attribute:

REAL, DIMENSION(:), ALLOCATABLE, SAVE :: a

This permits the allocatable array to remain allocated upon exit from the procedure
and preserves the current values of the array elements. Secondly, the allocatable
arrays could be put into modules, and in this case the arrays are preserved as long as
the executing program unit uses the modules. The array can also be ALLOCATED and
DEALLOCATED by any program unit using the module which the array was declared in.

Finally, there are three restrictions on the use of allocatable arrays:

• Allocatable arrays cannot be dummy arguments of a procedure and must, there-
fore, be allocated and deallocated in the same program unit

• The result of a function cannot be an allocatable array

• Allocatable arrays cannot be used in a derived type definition

4.12 Automatic Arrays
Automatic arrays are explicit-shape arrays within a procedure, which are not dummy
arguments. Some, or all, of the bounds of automatic arrays are provided when the
procedure is invoked. The bounds can depend on dummy arguments, or on variables
defined by use or host association. Note that ’use association’ is where variables
declared in the main body of a module are made available to a program unit by a USE

statement, and ’host association’ is where variables declared in a program unit are
made available to its contained internal procedures.

Automatic arrays are automatically created (allocated) upon entry to the procedure in
which they are declared, and automatically deallocated upon exit from the procedure.
Thus the size of the automatic array can be different in different procedure calls.

Note that Fortran 90 provides no mechanism for checking that there is sufficient mem-
ory for automatic arrays. If there is not, the program execution aborts.

The intrinsic function SIZE is often used when declaring automatic arrays. SIZE has
the form:

SIZE(ARRAY [,DIM])

This returns the extent of ARRAY along dimension DIM, or returns the size of ARRAY if
DIM is absent.

Array Processing

Manchester and North HPC T&EC 53

Note that an automatic array must not appear in a SAVE or NAMELIST statement, nor
be initialised in a type declaration.

The following example shows the automatic arrays, work1 and work2 which take their
size from the dummy arguments n and a:

SUBROUTINE sub(n,a)
IMPLICIT NONE
INTEGER :: n
REAL, DIMENSION(n,n), INTENT(INOUT) :: a
REAL, DIMENSION(n,n) :: work1
REAL, DIMENSION(SIZE(a,1)) :: work2
...

END SUBROUTINE sub

The next example shows automatic array bounds dependent on a global variable
defined in a module. Both use association and host association are shown:

MODULE auto_mod
IMPLICIT NONE
INTEGER :: n=1 ! set default n=1

CONTAINS
SUBROUTINE sub

IMPLICIT NONE
REAL, DIMENSION(n) :: w
WRITE (*, *) ’Bounds and size of a: ’, &

LBOUND(w), UBOUND(w), SIZE(w)
END SUBROUTINE sub

END MODULE auto_mod

PROGRAM auto_arrays
! automatic arrays using modules instead of
! procedure dummy arguments

USE auto_mod
IMPLICIT NONE
INTEGER :: n
n = 10
CALL sub

END PROGRAM auto_arrays

In the example below the power of dynamic arrays can be seen when passing only
part of an array to a subroutine. Suppose the main program declares a nxn array, but
the subroutine requires a n1xn1 section of this array a. In order to achieve this in For-
tran 77, both parameters n and n1 must be passed as subroutine arguments:

PROGRAM array
INTEGER n,n1
PARAMETER (n=10)
REAL a(n,n),work(n,n)
REAL res
...
READ(*,*) n1
if (n1 .LE. n) then

CALL sub(a,n,n1,res,work)
else

 c ... error processing code ...
end if
...

END PROGRAM array

SUBROUTINE sub(a,n,n1,res,work)

Fortran 90

54 Fortran 90 Student Notes

INTEGER n,n1
REAL a(n,n1)
REAL work(n1,n1)
REAL res
...
res=a(...)
...

END SUBROUTINE sub

Note the use of a work array, which is passed as an argument, in the above example.
The use of temporary work arrays is frequently necessary, particularly in numerical
analysis. In Fortran 77, this presented serious problems for providers of subroutine
libraries, who had to resort to requiring the calling sequence to include the work
arrays along with the genuine parameters. The parameter list was further lengthened
by the need to pass information about the dimensions of an array. Using dynamic
arrays in Fortran 90, this can be achieved with much simplified argument passing:

PROGRAM array
IMPLICIT NONE
REAL, ALLOCATABLE, DIMENSION(:,:) :: a
REAL :: res
INTEGER :: n1,alloc_stat
...
READ(*,*) n1
ALLOCATE(a(n1,n1),STAT=alloc_stat)
IF (alloc_stat /= 0) THEN

! ... error processing code ...
END IF
CALL sub(a,n1,res)
DEALLOCATE(a,STAT=alloc_stat)
IF (alloc_stat /= 0) THEN

! ... error processing code ...
END IF
...

CONTAINS

SUBROUTINE sub(a,n1,res)
IMPLICIT NONE
INTEGER, INTENT(IN) :: n1
REAL, INTENT(INOUT) :: res
REAL, DIMENSION(n1,n1), INTENT(IN) :: a
REAL, DIMENSION(n1,n1):: work
...
res=a(...)
...

END SUBROUTINE sub
END PROGRAM array

Notice that using an allocatable array a, the array is exactly the size we require in the
main program and so we can pass this easily to the subroutine. The work array, work,
is an automatic array whose bounds depend on the dummy argument n1.

4.13 Assumed Shape Arrays
An assumed shape array is an array whose shape is not known, but which takes on
whatever shape is imposed by the actual argument. When declaring an assumed
shape array, each dimension is specified as:

[lower_bound]:

Array Processing

Manchester and North HPC T&EC 55

where the lower bound defaults to 1 if omitted.

Assumed shape arrays make possible the passing of arrays between program units
without having to pass the dimensions as arguments. However, if an external proce-
dure has an assumed shape array as a dummy argument, then an interface block must
be provided in the calling program unit.

For example, consider the following external subprogram with assumed shape arrays
ra, rb and rc (note that the shapes given are relevant only to this example):

SUBROUTINE sub(ra,rb,rc)
IMPLICIT NONE
REAL, DIMENSION(:,:), INTENT(IN) :: ra ! Shape (10, 10)
REAL, DIMENSION(:,:), INTENT(IN) :: rb ! Shape (5, 5)
! = REAL, DIMENSION(1:5,1:5) :: rb
REAL, DIMENSION(0:,2:), INTENT(OUT) :: rc ! Shape (5, 5)
! = REAL, DIMENSION (0:4,2:6) :: rc
.
.
.

END SUBROUTINE sub

The calling program might include:

REAL, DIMENSION (0:9,10) :: ra ! Shape (10, 10)

INTERFACE
SUBROUTINE sub(ra,rb,rc)

REAL, DIMENSION(:,:), INTENT(IN) :: ra,rb
REAL, DIMENSION(0:,2:), INTENT(OUT) :: rc

END SUBROUTINE sub
END INTERFACE

.

.

.
CALL SUB (ra,ra(0:4,2:6),ra(0:4,2:6))

The following example uses allocatable, automatic and assumed shape arrays, and
shows another method of coding the final example in section 4.12, “Automatic
Arrays”.:

PROGRAM array
IMPLICIT NONE
REAL, ALLOCATABLE, DIMENSION(:,:) :: a
REAL :: res
INTEGER :: n1

INTERFACE
SUBROUTINE sub(a,res)

REAL, DIMENSION(:, :), INTENT(IN) :: a
REAL, DIMENSION(SIZE(a, 1),SIZE(a, 2)) :: work

END SUBROUTINE sub
END INTERFACE
...
READ (*, *) n1
ALLOCATE (a(n1, n1)) ! allocatable array
CALL sub(a,res)
...

CONTAINS

SUBROUTINE sub(a,res)
IMPLICIT NONE

Fortran 90

56 Fortran 90 Student Notes

REAL, INTENT(OUT) :: res
REAL, DIMENSION(:, :), INTENT(IN) :: a! assumed shape array
REAL, DIMENSION (SIZE(a, 1),SIZE(a, 2)) :: work

! automatic array
...
res = a(...)
...

END SUBROUTINE sub
END PROGRAM array

4.14 Array Intrinsics
Reduction

ALL(MASK[,DIM])
True if all elements true

ANY(MASK[,DIM])
True if any element true

COUNT(MASK[,DIM])
Number of true elements

MAXVAL(ARRAY[,DIM][,MASK])
Maximum element value

MINVAL(ARRAY[,DIM][,MASK])
Minimum element value

PRODUCT(ARRAY[,DIM][,MASK])
Product of array elements

SUM(ARRAY[,DIM][,MASK])
Sum of array elements

Inquiry

ALLOCATED(ARRAY)
True if array allocated

LBOUND(ARRAY[,DIM])
Lower bounds of array

SHAPE(SOURCE)
Shape of array (or scalar)

SIZE(ARRAY[,DIM])
Size of array

UBOUND(ARRAY[,DIM])
Upper bounds of array

Construction

MERGE(TSOURCE,FSOURCE,MASK)
Merge arrays subject to mask

PACK(ARRAY,MASK[,VECTOR])
Pack elements into vector subject to mask

SPREAD(SOURCE,DIM,NCOPIES)
Construct an array by duplicating an array section

UNPACK(VECTOR,MASK,FIELD)
Unpack elements of vector subject to mask

Reshape

Array Processing

Manchester and North HPC T&EC 57

RESHAPE(SOURCE,SHAPE[,PAD][,ORDER])
Reshape array

Array Location

MAXLOC(ARRAY[,MASK])
Location of maximum element

MINLOC(ARRAY[,MASK])
Location of minimum element

Array manipulation

CSHIFT(ARRAY,SHIFT[,DIM])
Perform circular shift

EOSHIFT(ARRAY,SHIFT[,BOUNDARY][,DIM])
Perform end-off shift

TRANSPOSE(MATRIX)
Transpose matrix

Vector and matrix arithmetic

DOT_PRODUCT(VECTOR_A,VECTOR_B)
Compute dot product

MATMUL(MATRIX_A,MATRIX_B)
Matrix multiplication

The following example shows the use of several intrinsic functions:

Three students take four exams. The results are stored in an INTEGER array:

score(1:3,1:4) =

• Largest score:

MAXVAL (score)! = 90

• Largest score for each student:

MAXVAL (score, DIM = 2)
! = (/ 90, 80, 66 /)

• Student with largest score:

MAXLOC (MAXVAL (SCORE, DIM = 2))
! = MAXLOC ((/ 90, 80, 66 /)) = (/ 1 /)

• Average score:

average = SUM (score) / SIZE (score)! = 62
! average is an INTEGER variable

• Number of scores above average:

above = score > average
! above(3, 4) is a LOGICAL array

85 76 90 60
71 45 50 80
66 45 21 55

Fortran 90

58 Fortran 90 Student Notes

! above =

n_gt_average = COUNT (above)! = 6
! n_gt_average is an INTEGER variable

• Pack all scores above the average:

...
INTEGER, ALLOCATABLE, DIMENSION (:) :: &

score_gt_average
...
ALLOCATE (score_gt_average(n_gt_average)
scores_gt_average = PACK (score, above)
! = (/ 85, 71, 66, 76, 90, 80 /)

• Did any student always score above the average?

ANY (ALL (above, DIM = 2))! = .FALSE.

• Did all students score above the average on any of the tests?

ANY (ALL (above, DIM = 1))! = .TRUE.

4.15 Array Example
The following example shows the use of arrays in the conjugate gradient algorithm:

PROGRAM conjugate_gradients

IMPLICIT NONE
INTEGER :: iters, its, n
LOGICAL :: converged
REAL :: tol, up, alpha, beta
REAL, ALLOCATABLE :: a(:,:),b(:),x(:),r(:),u(:),p(:),xnew(:)

READ (*,*) n, tol, its
ALLOCATE (a(n,n),b(n),x(n),r(n),u(n),p(n),xnew(n))

OPEN (10, FILE=’data’)
READ (10,*) a
READ (10,*) b

x = 1.0
r = b - MATMUL(a,x)
p = r

iters = 0

DO
iters = iters + 1
u = MATMUL(a, p)
up = DOT_PRODUCT(r, r)
alpha = up / DOT_PRODUCT(p, u)
xnew = x + p * alpha
r = r - u * alpha
beta = DOT_PRODUCT(r, r) / up
p = r + p * beta
converged = (MAXVAL(ABS(xnew-x)) / &

MAXVAL(ABS(x)) < tol)

T T T F

T F F T

T F F F

Array Processing

Manchester and North HPC T&EC 59

x = xnew
IF (converged .OR. iters == its) EXIT

END DO

WRITE (*,*) iters
WRITE (*,*) x

END PROGRAM conjugate_gradients

Fortran 90

60 Fortran 90 Student Notes

4.16 Exercises
1. Run the program matrix.f90 which declares a 2-dimensional integer array,

with extents (n,n), where n is set to 9 in a PARAMETER statement.

This program uses DO loops to assign elements of the array to have values r c,
where r is the row number and c is the column number, e.g., a(3,2) = 32, a(5,7) =
57. It writes the resulting array to the file matrix.dat for later use.

2. From the array constructed in exercise 1, use array sections to write out:
(a) the first row
(b) the fifth column
(c) every second element of each row and column, columnwise

(d) every second element of each row and column, rowwise

(e) the 3 non-overlapping 3x3 sub-matrices in columns 4 to 6
(section.f90)

3. Write a program which generates an 8x8 chequerboard, with 'B' and 'W' in
alternate positions. Assume the first position is 'B'. (board.f90)

4. From the array constructed in exercise 1, use the WHERE construct to create an
array containing all of the odd values and 0 elsewhere (use elemental function,
MOD). (where.f90)

5. Declare a vector subscript, iv, with extent 5. From the array constructed in exer-
cise 1 create a 9x5 array containing only the odd values. (vec_subs.f90)

6. Generate the array constructed in exercise 1 using a single array constructor.
(reshape.f90)

11 12 13 14 15 16 17 18 19
21 22 23 24 25 26 27 28 29
31 32 33 34 35 36 37 38 39
41 42 43 44 45 46 47 48 49
51 52 53 54 55 56 57 58 59
61 62 63 64 65 66 67 68 69
71 72 73 74 75 76 77 78 79
81 82 83 84 85 86 87 88 89
91 92 93 94 95 96 97 98 99

11 31 51 71 91
13 33 53 73 93
15 35 55 75 95
17 37 57 77 97
19 39 59 79 99

11 13 15 17 19
31 33 35 37 39
51 53 55 57 59
71 73 75 77 79
91 93 95 97 99

14 15 16
24 25 26
34 35 36

44 45 46
54 55 56
64 65 66

74 75 76
84 85 86
94 95 96

Array Processing

Manchester and North HPC T&EC 61

7. Look at the Fortran 77 code sum2.f90. Rewrite it using Fortran 90 with allocat-
able and assumed-shape arrays. (sum4.f90)

Is there any instrinsic function which can simplify the same job? (sum5.f90)

8. Create an integer array whose size is allocated dynamically (read size from ter-
minal). Assign odd and even values to the array (same as matrix.f90). Pass
the array to a subroutine which uses an assumed shape argument and returns
all odd values of the array and 0 elsewhere.
(odd_val.f90)

9. Run the program spread1.f90. Modify it to create an real array with element
values 1.0/REAL(i+j+1), where i is the row number and j is the column number.
(spread2.f90)

Can you find another way using Fortran 90 array?

10. Look at the program m_basis.f90. Modify it to select all values greater than
3000 and find the number of them, the maximum, the minimum and the aver-
age. (munro.f90)

Fortran 90

62 Fortran 90 Student Notes

Pointer Variables

Manchester and North HPC T&EC 63

5 Pointer Variables

5.1 What is a Pointer
A pointer variable, or simply a pointer, has the POINTER attribute, and may point to (be
an alias of) another data object of the same type, which has the TARGET attribute, or an
area of dynamically allocated memory.

The introduction of pointer variables brings Fortran 90 into the league of languages
like Pascal and C. But they are quite different from, for example, pointers in C. In For-
tran 90, a pointer variable does not contain any data itself and should not be thought
of as an address. Instead, it should be thought of as a variable associated dynamically
with or aliased to another data object where the data is actually stored - the target.

The use of pointers provides several benefits, of which the two most important are:

• The ability to provide a more flexible alternative to allocatable arrays.

• The tool to create and manipulate linked lists and other dynamic data structures.

The latter one opens the door to powerful recursive algorithms as well as the means to
tailor the storage requirements exactly to the needs of the problem and the data.

5.2 Specifications
The general forms for a pointer type and a target type declaration statements are

type [[,attribute]...] POINTER :: list of pointer variables
type [[,attribute]...] TARGET :: list of target variables

where

• the type specifier specifies what type of data object can be pointed to, which in-
cludes intrinsic types as well as derived types,

• the attribute list gives the other attributes (if any) of the data type.

A pointer variable must have the same type, type parameter and rank as its target var-
iable. The type declaration statement for an array pointer specifies the type and the
rank of arrays that it can point to. Note that only the rank is required, not the extent or
array bounds. The dimension attribute of an array pointer cannot specify an explicit-
shape or an assumed-shape array, but must take the form of a deferred-shape array, in
a similar manner to that used for an allocatable array.

Thus, the statement

REAL,DIMENSION(:), POINTER :: p

declares a pointer, p, which can point to any rank one, default-real array.

But, the statement

Fortran 90

64 Fortran 90 Student Notes

REAL,DIMENSION(20), POINTER :: p

is an illegal statement, which is not allowed.

5.3 Pointer Assignments
A pointer can be set up as an alias of a target by a pointer assignment statement,
which is executable and takes the form

pointer => target

where pointer is a variable with the pointer attribute and target is a variable which
has either the target attribute or the pointer attribute.

Once a pointer is set up as an alias of a target, its use in a situation where a value is
expected (for example, as one of the operands of an operator) is as if it were the asso-
ciated target, i.e., the object being pointed to.

The following code and figure illustrate some pointer assignment statements and
their effects:

REAL, POINTER :: p1, p2
REAL, TARGET :: t1 = 3.4, t2 = 4.5
p1 => t1 ! p1 points to t1
p2 => t2 ! p2 points to t2
p2 => p1 ! p2 points to the target of p1

The first line here declares two variables p1 and p2 to be pointers to areas of memory
able to store real variables. The second line declares t1 and t2 to be real variables and
specifies that they might be targets of pointers.

The next two pointer assignment statements make p1 points to t1 and p2 point to t2,
which results the following situation:

After the last pointer assignment statement is executed, the target of p2 is changed to
that of p1, so that p1 and p2 are now both alias of t1 but leaves the value t2

unchanged:

Note that the statement

p2 => p1 + 4.3 ! illegal

is illegal because we cannot associate a pointer with an arithmetic expression.

5.3.1 Pointer Versus Ordinary Assignments

Contrast this with the following code (only the last line is different):

REAL, POINTER :: p1, p2
REAL, TARGET :: t1 = 3.4, t2 = 4.5
p1 => t1 ! p1 points to t1
p2 => t2 ! p2 points to t2
p2 = p1 ! ordinary assignment, equivalent to t2 = t1

t1

3.4p1

t2

4.5p2

t1

3.4
p1

t2

4.5p2

Pointer Variables

Manchester and North HPC T&EC 65

After the last ordinary assignment (versus pointer assignment) statement is executed,
the situation is as follows:

Note that this assignment has exactly the same effect as

t2 = t1

since p1 is an alias of t1 and p2 is an alias of t2.

5.3.2 Array Pointers

The target of a pointer can also be an array. Such a pointer can be referred to as an
array pointer. The following example and figure show the use of array pointers:

REAL, DIMENSION (:), POINTER :: pv1
REAL, DIMENSION (:, :), POINTER :: pv2
REAL, DIMENSION (-3:5), TARGET :: tv1
REAL, DIMENSION (5, 10), TARGET :: tv2
INTEGER, DIMENSION(3) :: v = (/ 4, 1, -3 /)
pv1 => tv1 ! pv1 aliased to tv1
pv1 => tv1(:) ! pv1 points to tv1 with section subscript
pv1 => tv2(4, :) ! pv1 points to the 4th row of tv2
pv2 => tv2(2:4, 4:8) ! pv2 points to a section of tv2
pv1 => tv1(1:5:2) ! pv1 points to a section of tv1
pv1 => tv1(v) ! invalid

t1

3.4p1

t2

3.4p2

tv2(4,:)

pv1(1:10)

tv2(2:4,4:8)

pv2(1:3,1:5)

pv1(-3:5)

tv1(1:5:2)

pv1(1:3)

tv1(-3:5)

pv1 => tv1

pv1 => tv2(4, :)

pv2 => tv2(2:4, 4:8)

pv1 => tv1(1:5:2)

pv1(1:9)

tv1(-3:5)

pv1 => tv1(:)

Fortran 90

66 Fortran 90 Student Notes

There are several important points to observe:

• The pointer pv1 is associated at different times with arrays (array sections)
having different extents. This is allowed because it is only the rank that matters;
the extent of array does not matter.

• If an array pointer is aliased with an array, its extents remains the same as its tar-
get array. So with pv1 => tv1, pv1 has the same lower and upper bounds as tv1,
i.e., -3:5. If an array pointer points to an array section, its lower bound in each
dimension is always renumbered with 1. So with pv1 => tv1(:), where the ar-
ray section subscript is used, the lower and upper bounds of pv1 are 1:9 instead
of -3:5; thus pv1(1) is interpreted as tv1(-3), pv1(2) is tv1(-2), and so on.
This renumbering also happens when tv2 is aliased to the array section
tv2(2:4, 4:8).

• It is legitimate to associate an array pointer with an array section defined by a
subscript triplet, but it is not permitted to associate one with an array section
defined by a vector subscript. So the pointer assignment pv1 => tv1(1:5:2) is
valid with pv1(1) aliased to tv1(1), pv1(2) to tv1(3), and pv1(3) to tv1(5),
but the last pointer assignment is invalid.

5.4 Pointer Association Status
Every pointer has one of the following three association states:

1. Undefined - when it is initially specified in a type declaration statement.
2. Null (disassociated) - when it is nullified by a NULLIFY statement.
3. Associated - when it points to a target.

A pointer may be explicitly disassociated from its target and set to point at ‘nothing’
by executing a NULLIFY statement, whose general form is

NULLIFY(list of pointers)

The intrinsic function ASSOCIATED can be used to test the association status of a
pointer with one argument or with two:

ASSOCIATED(p, [,t])

When t is absent, it returns the logical value .TRUE. if the pointer p is currently asso-
ciated with a target and .FALSE. otherwise. If t is present and is a target variable, it
returns .TRUE. if the pointer p is associated with t and .FALSE. otherwise. The sec-
ond argument t may itself be a pointer, in which case it returns .TRUE. if both point-
ers are associated to the same target or disassociated and .FALSE. otherwise.

There is one restriction concerning the use of this function, that is the pointer argu-
ment must not have an undefined pointer association status. Therefore, it is recom-
mended that a pointer should always be either associated with a target immediately
after its declaration, or nullified by the NULLIFY statement to ensure its null status.

The following code shows the status of pointers at different stages:

REAL, POINTER :: p, q ! undefined association status
REAL, TARGET :: t = 3.4
p => t ! p points to t1
q => t ! q also points to t1
PRINT *, "After p => t, ASSOCIATED(p) = ", ASSOCIATED(p) ! .T.
PRINT *, "ASSOCIATED(p, q) = ", ASSOCIATED(p, q) ! .T.
NULLIFY(p)
PRINT *, "After NULLIFY(p), ASSOCIATED(p) = ", ASSOCIATED(p) ! .F.
PRINT *, "ASSOCIATED(p, q) = ", ASSOCIATED(p, q) ! .F.

Pointer Variables

Manchester and North HPC T&EC 67

...
p => t ! p points to t2
NULLIFY(p, q)

Note that the disassociation of p did not affect q even though they were both pointing
at the same object. After being nullified, p can be associated again either with the
same or different object later. The last line just illustrates that a NULLIFY statement can
have more than one pointer argument.

5.5 Dynamic Storage
Besides pointing to existing variables with a TARGET attribute, a pointer may be asso-
ciated with a dynamically allocated area of memory via the ALLOCATE statement. The
ALLOCATE statement creates an un-named variable or array of the specified size, hav-
ing the correct type, type parameters and rank, and with an implied target attribute:

REAL, POINTER :: p
REAL, DIMENSION (:, :), POINTER :: pv
INTEGER :: m, n
...
ALLOCATE (p, pv(m, n))

In this example, the pointer p is set to point to a dynamically allocated area of memory
able to store a real variable, and the pointer pv to a dynamically allocated real array of
size m by n.

The area of memory which was created by a pointer allocate statement can be released
when no longer required by means of the DEALLOCATE statement:

DEALLOCATE(pv)

Here when the area of memory allocated for pv is deallocated, the association status of
pv becomes null.

The general forms of the ALLOCATE and DEALLOCATE statements are

ALLOCATE(pointer[(dimension specification)]... [,STAT = status])
DEALLOCATE(pointer... [,STAT = status]

where pointer is a pointer variable, dimension specification is the specification
of the extents for each dimension if the pointer variable has both the dimension and
pointer attributes (array pointer), and status is an integer variable which will be
assigned the value zero after a successful allocation/deallocation, or a positive value
after an unsuccessful allocation/deallocation. Note that both statements can allocate/
deallocate memory for more than one pointer.

The ability to create dynamic memory brings greater versatility and freedom to pro-
gramming, but also brings its own problems if care is not taken. In particular there are
two potential dangers which need to be avoided.

The first is the dangling pointer. Consider the following

...
REAL, POINTER :: p1, p2
ALLOCATE (p1)
p1 = 3.4
p2 => p1
...
DEALLOCATE (p1)
...

Fortran 90

68 Fortran 90 Student Notes

The pointers p1 and p2 both are alias of the same dynamic variable. After the execu-
tion of the DEALLOCATE statement, it is clear that p1 is disassociated and the dynamic
variable to which it was pointing is destroyed. Since the dynamic variable that p2 was
aliasing has disappeared, p2 becomes a dangling pointer and a reference to p2 will
produce unpredictable results. In this case, the solution is to make sure that p2 is nul-
lified immediately after the deallocation.

The second is that of unreferenced storage. Consider the following

...
REAL, DIMENSION(:), POINTER :: p
ALLOCATE (p(1000))
...

If p is nullified or set to point to somewhere else, or the subprogram is exited (note
that p has no SAVE attribute), without first deallocating it, there is no way to refer to
that block of memory and so it can not be released. The solution is to deallocate a
dynamic object before modifying a pointer to it.

5.6 Pointer Arguments
Pointers, whether allocated or not, are allowed to be procedure arguments, but only
as long as the following conditions are adhered to:

• If a procedure has a pointer or target dummy argument, the interface to the pro-
cedure must be explicit.

• If a dummy argument is a pointer, the actual argument must be a pointer with
the same type, type parameter and rank.

• A pointer dummy argument can not have the intent attribute.

Consider the following program extract:

... ! program unit which calls sub1 and sub2
INTERFACE ! interface block for sub2

SUBROUTINE sub2(b)
REAL, DIMENSION(:, :), POINTER :: b

END SUBROUTINE sub2
END INTERFACE
REAL, DIMENSION(:, :), POINTER :: p
...
ALLOCATE (p(50, 50))
CALL sub1(p)
CALL sub2(p)
...

SUBROUTINE sub1(a)! a is not a pointer but an assumed shape array
REAL, DIMENSION(:, :) :: a
...

END SUBROUTINE sub1

SUBROUTINE sub2(b)! b is a pointer
REAL, DIMENSION(:, :), POINTER :: b
...
DEALLOCATE(b)
...

END SUBROUTINE sub2

The important points here are:

• Both sub1 and sub2 are external procedures. Because sub2 has a pointer dummy

Pointer Variables

Manchester and North HPC T&EC 69

argument, an interface block is required to provide an explicit interface in the
calling program unit (not for sub1 since it has an assumed shape array as a dum-
my argument). An alternative approach would be using a module or internal
procedure to provide an explicit interface by default.

• The calling program unit sets the pointer p as an alias to a dynamically allocated
real array of size 50 by 50, and then calls sub2. This associates the dummy point-
er b with the actual pointer argument p. When sub2 deallocates b, this also deal-
locates the actual argument p in the calling program unit and sets the association
status of p to null.

In contrast, allocatable arrays can not be used as dummy arguments, and must, there-
fore, be allocated and deallocated in the same program unit. Only allocated allocata-
ble arrays can be passed as actual arguments, but not unallocated allocatable arrays.

5.7 Pointer Functions
A function result may also have the pointer attribute, which is useful if the result size
depends on calculations performed in the function. For example

...
INTEGER, DIMENSION(100) :: x
INTEGER, DIMENSION(:), POINTER :: p
...
p => gtzero(x)
...
CONTAINS

FUNCTION gtzero(a)! function to get all values .gt. 0 from a
INTEGER, DIMENSION(:), POINTER :: gtzero
INTEGER, DIMENSION(:) :: a
INTEGER :: n
... ! find the number of values .gt. 0, n
IF (n == 0)

NULLIFY(gtzero)
ELSE

ALLOCATE (gtzero(n))
ENDIF
... ! put the found values into gtzero

END FUNCTION gtzero
...

There are two points which need to be mentioned in the above example:

• The pointer function gtzero has been put as an internal procedure, because the
interface to a pointer function must be explicit.

• The pointer function result can be used as an expression (but must be associated
with a defined target firstly) in a pointer assignment statement. As a result, the
pointer p points to a dynamically allocated integer array, of the correct size, con-
taining all positive values of the array x.

5.8 Arrays of Pointers
We have already stated that, because a pointer is an attribute and not a data type, an
array of pointers can not be declared directly. However, a pointer not only can point at
an object of intrinsic type or derived type, but also can be a component of a derived
type. Therefore, an array of pointers can be easily simulated by means of a derived
type having a pointer component of the desired type, and then creating an array of
that derived type.

Fortran 90

70 Fortran 90 Student Notes

Suppose an array of pointers to reals is required. A derived type real_pointer can be
defined, whose only component is a pointer to reals:

TYPE real_pointer
REAL, DIMENSION(:), POINTER :: p

END TYPE real_pointer

Then an array of variables of this type can be defined:

TYPE(real_pointer), DIMENSION(100) :: a

It is now possible to refer to the ith pointer by writing a(i)%p.

The following example shows each row of a lower-triangular matrix may be repre-
sented by a dynamic array of increasing size:

INTEGER, PARAMETER :: n=10
TYPE(real_pointer), DIMENSION(n) :: a
INTEGER :: i

DO i = 1, n
ALLOCATE (a(i)%p(i)) ! refer to the ith pointer by a(i)%p

END DO

Note that a(i)%p points to a dynamically allocated real array of size i and therefore
this representation uses only half the storage of conventional two dimensional array.

5.9 Linked List
One of the common and powerful applications of pointers is in setting up and manip-
ulating linked list. In a linked list, the connected objects (such an object can be called a
node):

• are not necessarily stored contiguously,

• can be created dynamically (i.e., at execution time),

• may be inserted at any position in the list,

• may be removed dynamically.

Therefore, the size of a list may grow to an arbitrary size as a program is executing.

In this section we will give a simple example to explain how to build a linked list.
Note that trees or other dynamic data structures can be constructed in a similar way to
linked lists.

A pointer component of a derived type can point at an object of the same type; this
enables a linked list to be created:

TYPE node
INTEGER :: value ! data field
TYPE (node), POINTER :: next ! pointer field

END TYPE node

As shown above, a linked list typically consists of objects of a derived type containing
fields for the data plus a field that is a pointer to the next object of the same type in the
list. It is convenient to represent a linked list in diagrammatic form, as shown in fol-
lowing figure:

Pointer Variables

Manchester and North HPC T&EC 71

Conventionally, the first node in the list is referred to as the head of the list, while the
last node is called the tail.

Consider the following example:

PROGRAM simple_linked_list
IMPLICIT NONE
TYPE node

INTEGER :: value ! data field
TYPE (node), POINTER :: next ! pointer field

END TYPE node
INTEGER :: num, status
TYPE (node), POINTER :: list, current
! build up the list
NULLIFY(list) ! initially nullify list (empty)
DO

READ *, num ! read num from keyboard
IF (num == 0) EXIT ! until 0 is entered
ALLOCATE(current, STAT = status)! create new node
IF (status > 0) STOP ’Fail to allocate a new node’
current%value = num ! giving the value
current%next => list ! point to previous one
list => current ! update head of list

END DO
! traverse the list and print the values
current => list ! make current as alias of list
DO

IF (.NOT. ASSOCIATED(current)) EXIT! exit if null pointer
PRINT *, current%value ! print the value
current => current%next ! make current alias of next node

END DO
END PROGRAM simple_linked_list

Firstly, we define the type of node which contains an integer value as a data field and
a pointer component which can point to the next node.

Then two variables of this type are declared, list and current, where list will be
used to point to the head of the list and current to a general node of the list.

The procedure of building up this linked list is illustrated progressively as follows:

• At first, the list is empty, so list should point to both the beginning and the end.
This is effected by initially nullifying list, which is represented by the symbol
for earthing an electrical conductor:

• Now suppose the value 1 is read in (num contains the value), a list is initially set
up with one node, containing the integer value 1. This is achieved by firstly al-
locating a dynamic storage for current, then giving it the value num, and finally
setting list to point to the head of the list which is the newly allocated current

node, and letting current%next point to null.

...

head tail

data fields

pointer

data fields

pointer

data fields

pointer

data fields

pointer

list

Fortran 90

72 Fortran 90 Student Notes

• This process can be repeated as long as the value 0 is read in. If, for example, the
values 1, 2, 3 are entered in that order, the linked list looks like:

Having built up the linked list, the next thing is to traverse it and print all the values:

• We start by making current an alias of list, which points to the head of the list.

• Then we print the value of that node (current%value).

• After printing, current is made to point to the next node.

• Each time, the association status of the current node is tested to see if it is null.
If null, the tail of the list has been reached and the list traversing is finished.

Note that it is important to never loose the head of the list, as this would cause unref-
erenced storage.

One of advantages of using linked list is that its storage can be released when no
longer needed. This can be easily done by traversing the list and deallocating all the
nodes in a similar way as the above traversing and printing all the values:

! traverse the list and deallocate each node
current => list ! make current point to head of list
DO

IF (.NOT. ASSOCIATED(current)) EXIT! exit if null pointer
list => current%next ! make list point to next node of head
DEALLOCATE(current) ! deallocate current head node
current => list ! make current point to new head

END DO

Note that the linked list built up stores the reading values in reverse order. If the order
of reading values are to be preserved in the linked list, more housekeeping work is
required, and this is left as an exercise.

list 1

next

3

next

2

next

1

next

Pointer Variables

Manchester and North HPC T&EC 73

5.10 Exercises
1. Write a program, in which you:

 a) Define two pointers pv1 and pv2, where pv1 can point to a one dimensional
 real array and pv2 can point to a two dimensional real array.

 b) Define two target real arrays, tv1 and tv2, where tv1 is one dimensional with
 bounds -3:5 and tv2 is two dimensional with bounds 1:5, 1:10.

c) Set up the array pointer pv1 to point to tv1 such that pv1 has the lower
 bound -3 (Write out the lower bound of pv1 for confirmation).

d) Set up the array pointer pv1 to point to tv1 such that pv1 has the lower
 bound 1 (Write out the lower bound of pv1 for confirmation).

 e) Can you set pv1 to point to tv1 such that pv1 has the lower bound -2?

 f) Use pointers (pv1 or pv2) to write out the 4th row of tv2, the section
 tv2(2:4, 4:8) and the section tv1(1:5:2).

 (p_array.f90)

2. Look at the program status.f90, write down what you think will be printed.
Then run the program to compare.

3. Write a program which uses an array of pointers (simulated by means of a
derived type having a pointer component of the desired type) to set up a lower-
triangular matrix. (p_matrix.f90)

4. Run the program simple.f90, notice that the linked list stores the typed-in
numbers in reverse order. Modify this program such that the linked list pre-
serves the order of typed-in numbers. (linklist.f90)

5. Run the program polyline.f90, which uses the polyline module
(poly_mod.f90), notice that the linked list stores the points read in reverse
order. When prompted for a y value enter the y value of the point that you
want to delete from the list. Compare the two versions of the list that have been
printed. Has your point been deleted?

Modify this program such that the linked list preserves the order of points read.
(poly2.f90)

Fortran 90

74 Fortran 90 Student Notes

Input/Output

Manchester and North HPC T&EC 75

6 Input/Output

The only major new input/output features in Fortran 90 are NAMELIST, non-advanc-
ing I/O and some new edit descriptors.

6.1 Non-advancing I/O
In Fortran 77, every READ or WRITE statement involved complete records. There are
occasions where it would be convenient to read/write only part of a record, and
read/write the rest later. In Fortran 90, this facility is provided by non-advancing I/O.

Non-advancing I/O obviates the need for records to be read as a whole and for the
record length to be known beforehand. It is specified with

ADVANCE=’NO’

on the READ or WRITE statement and inhibits the automatic advance to the next record
on completion of the statement. If

ADVANCE=’YES’

is specified, or the specifier is absent, then the default normal (advancing) I/O occurs.

It is possible to specify advancing and non-advancing I/O on the same record or file.
A common use of this is to write a prompt to the screen, specifying non-advancing I/
O, and then read the next character position on the screen. For example:

WRITE(*, ’(”Input size?”)’, ADVANCE=’NO’)
READ(*, ’(I5)’) n

It is often useful to determine how many characters have been read on a non-advanc-
ing input. This can be achieved using the SIZE specifier, which has the general form

SIZE=character_count

The integer variable character_count is assigned the number of characters read,
excluding any padding characters, on completion of the non-advancing read.

If a non-advancing input reads beyond the end of a record, this can be detected using
the IOSTAT specifier which has the form

IOSTAT=io_status

On completion of a READ statement io_status is assigned a value which indicates
whether an end-of-record or end-of-file condition has occurred. For example, the
NAG compiler returns -1 in the IOSTAT specifier when end-of-file is encountered, and
-2 for end-of-record.

Fortran 90

76 Fortran 90 Student Notes

6.2 INQUIRE by I/O List
This is used to determine the length of an unformatted output item list. The form

INQUIRE(IOLENGTH=length) output-list

The length may be used as a value of the RECL specifier in subsequent OPEN state-
ments. For example,

INTEGER :: rec_len
...
INQUIRE(IOLENGTH=rec_len) name,title,age,address,tel
...
OPEN(UNIT=1,FILE=’TEST’,RECL=rec_len,FORM=’UNFORMATTED’)
...
WRITE(1) name,title,age,address,tel
...

6.3 NAMELIST
The NAMELIST statement has been available as a suppliers extension to Fortran since
the early days (it was available as an IBM extension to FORTRAN II in the early 60’s!).
It has now been included in the Fortran 90 language. However, NAMELIST is a poorly
designed feature and should be avoided whenever possible.

NAMELIST is a facility whereby a set of variables can be gathered together into a
named group in order to simplify I/O. The NAMELIST statement is a specification
statement and must, therefore, appear before any executable code in the defining pro-
gram unit. The general form of the NAMELIST statement is:

NAMELIST/namelist-group-name/variable-list

Note that a variable in a NAMELIST group may not be an array dummy argument with
non-constant bounds, a variable with assumed character length, an automatic object,
an allocatable array, a pointer, or a variable which at any depth of component selec-
tion is a pointer.

In READ or WRITE statements, the namelist-group-name may be specified with the
NML specifier, or may replace the format specifier. There is no need for input/output
lists.

An I/O record for a namelist group has a specific format:

&namelist-group-name var1=x, var2=y, var3=z

It is possible to omit items when inputting data, and such items remain unchanged.
Also, items do not have to be input in the order specified in the NAMELIST statement.

6.3.1 Example

This example shows the namelist group named clothes:

INTEGER :: size=2
CHARACTER (LEN=4) :: colour(3) = (/ ’ red’,’pink’,’blue’ /)
NAMELIST /clothes/ size, colour
WRITE(*, NML = clothes)

The output would be:

Input/Output

Manchester and North HPC T&EC 77

&CLOTHES SIZE = 2, COLOUR = redpinkblue/

6.4 New Edit Descriptors
Edit descriptors specify exactly how values should be converted into a character
string on an output device or internal file, or converted from a character string on an
input device or internal file. Fortran 90 provides the following new edit descriptors:

6.4.1 Example

This example illustrates the differences among E, EN, ES and G edit descriptors:

PROGRAM e_en_es_g_compare
IMPLICIT NONE
REAL, DIMENSION(4) :: &

x=(/1.234, -0.5, 0.00678, 98765.4/)
PRINT ’(4E14.3/4EN14.3/4ES14.3/4G14.3)’, x, x, x, x

END PROGRAM e_en_es_g_compare

The output would be

0.123E+01 -0.500E+00 0.678E-02 0.988E+05

1.234E+00 -500.000E-03 6.780E-03 98.765E+03

1.234E+00 -5.000E-01 6.780E-03 9.877E+04

1.234 -0.500 0.678E-02 0.988E+05

6.5 New Statement Specifiers
The INQUIRE, OPEN, READ and WRITE statements are not new, but a few new specifiers
have been added.

INQUIRE

EN (Engineering) Same as E but exponent divisible by 3, value
before decimal point between 1 and 1000

ES (Scientific) Same as E but value before decimal point is
between 1 and 10

B Binary

O Octal

Z Hexadecimal

G Generalised edit descriptor now applicable for all intrinsic
types

POSITION = ASIS, REWIND, APPEND or UNDEFINED

The initial file position as specified by the corresponding
OPEN statement.

ACTION = READ, WRITE, READWRITE or UNDEFINED

Fortran 90

78 Fortran 90 Student Notes

OPEN

The specifiers POSITION, ACTION, DELIM and PAD have the same values and meanings
as for INQUIRE. One additional value has been provided for the STATUS specifier:

READ/WRITE

READ

DELIM = APOSTROPHE, QUOTE, NONE or UNDEFINED

The character used to delimit character constants with list-
directed or NAMELIST I/O. The default is ’NONE’.

PAD = YES or NO

’YES’ means the input record is (to be regarded as) padded
with blanks. ’NO’ means the input record must be long enough
to accommodate the input list (except for ADVANCE=’NO’). The
default is PAD=’YES’.

READWRITE = YES, NO or UNKNOWN

Indicates whether READWRITE is allowed, not allowed or unde-
termined for a file

READ = YES, NO or UNKNOWN

Indicates whether READ is allowed, not allowed or undeter-
mined for a file

WRITE = YES, NO or UNKNOWN

Indicates whether WRITE is allowed, not allowed or undeter-
mined for a file

STATUS = REPLACE

If the file to open does not exist it is created, and if it does exist
it is deleted and a new one is created.

NML = namelist_name

This would be used in place of the FMT specifier when using a
NAMELIST group.

ADVANCE = YES, or NO

EOR = label

Control passes to statement label when an end-of-record con-
dition occurs.

SIZE = character count

Input/Output

Manchester and North HPC T&EC 79

6.6 Exercises

Look at the programs non_adv.f90, inquire.f90,

namelist.f90, edit1.f90, edit2.f90, and io_spec.f90, and run them.

Notice how these programs use new I/O facilities.

Fortran 90

80 Fortran 90 Student Notes

Intrinsic Procedures

Manchester and North HPC T&EC 81

7 Intrinsic Procedures

Fortran 90 offers over one hundred intrinsic procedures, all of which can be refer-
enced using keyword arguments and many having optional arguments. Intrinsic
functions that could only be used with one data type have now been superseded by
generic versions.

The intrinsic procedures fall into four distinct categories:

• Elemental procedures

These are specified for scalar arguments, but are also applicable to conforming
array arguments applying the procedure element by element.

• Inquiry functions

Inquiry functions return properties of principal arguments that do not depend
upon their values.

• Transformational functions

These functions usually have array arguments and an array result whose ele-
ments depend on many of the elements in the array arguments.

• Nonelemental Subroutines

The new intrinsic features provided by Fortran are described briefly in this chapter,
divided into the four categories given above.

7.1 Elemental Procedures
7.1.1 Elemental Functions

Numeric

CEILING(A)
Smallest integer not less than A.

FLOOR(A)
Largest integer not exceeding A.

MODULO(A,P)
A modulo P for A and P both real or both integer.

Character

ACHAR(I)
Character in position I of ASCII collating sequence.

ADJUSTL(STRING)
Adjust left, change leading blanks into trailing blanks.

Fortran 90

82 Fortran 90 Student Notes

ADJUSTR(STRING)
Adjust right, change trailing blanks into leading blanks.

IACHAR(C)
Position of character C in ASCII collating sequence.

INDEX(STRING,SUBSTRING[,BACK])
Starting position of SUBSTRING within STRING. If more than one SUBSTRING

than position of first (or last if BACK true) is returned.

LEN_TRIM(STRING)
Length of STRING without trailing blanks.

SCAN(STRING,SET[,BACK])
Index of left-most (right-most if BACK true) character of string that belongs to
SET; zero if none belong.

VERIFY(STRING,SET[,BACK])
The position of left-most (or right-most if BACK true) character of STRING that is
not in SET. Zero if each character of STRING appears in SET.

Bit Manipulation

BTEST(I,POS)
True if bit POS of integer I has value 1.

IAND(I,J)
Logical AND on all corresponding bits of I and J.

IBCLR(I,POS)
Bit POS of I cleared to zero.

IBITS(I,POS,LEN)
Extract sequence of LEN bits of I starting from bit POS.

IBSET(I,POS)
Bit POS of I set to 1.

IEOR(I,J)
Logical exclusive OR on all corresponding bits of I and J.

IOR(I,J)
Logical inclusive OR on all corresponding bits of I and J.

ISHFT(I,SHIFT)
Value of I with bits shifted SHIFT places to left (right if negative) and zeros
shifted in from other end.

ISHFTC(I,SHIFT[,SIZE])
Value of I with circular shift of SIZE right-most bits SHIFT places to the left
(right if negative).

NOT(I)
Logical complement of all bits of I.

Kind

SELECTED_INT_KIND(R)
Kind of type parameter for specified exponent range. -1 returned if no such
kind is available.

SELECTED_REAL_KIND(P,R)
Kind of type parameter for specified precision and exponent range. -1 returned
is precision is unavailable, -2 if range is unavailable and -3 if neither are availa-
ble.

Floating Point Manipulation

Intrinsic Procedures

Manchester and North HPC T&EC 83

EXPONENT(X)
Exponent part of the model for X.

FRACTION(X)
Fractional part of the model for X.

NEAREST(X,S)
Nearest different machine number in the direction given by the sign of S

RRSPACING(X)
Reciprocal of relative spacing of the model numbers near X.

SCALE(X I)

X2I (real)

SET_EXPONENT(X,I)
Real whose sign and fractional part are those of X, and whose exponent part is
I.

SPACING(X)
Absolute spacing of model numbers near X.

Logical

LOGICAL(L[,KIND])
Converts between kinds of logical numbers.

7.1.2 Elemental Subroutine

CALL MVBITS(FROM,FROMPOS,LEN,TO,TOPOS)
Copy LEN bits of FROM starting at position FROMPOS to TO, starting at position
TOPOS.

7.2 Inquiry Functions
ASSOCIATED(POINTER[,TARGET])

True if pointer associated with a target. If target present, then true only if asso-
ciated with specified target.

BIT_SIZE(I)
Maximum number of bits that may be held in an integer.

KIND(X)
Kind type parameter for X.

PRESENT(A)
True if optional argument A is present.

Numeric

DIGITS(X)
Number of significant digits in the model for X.

EPSILON(X)
Number that is almost negligible compared with 1 in the model for numbers
like X.

HUGE(X)
Largest number in the model for numbers like X.

MAXEXPONENT(X)
Maximum exponent in the model for numbers like X.

MINEXPONENT(X)
Minimum exponent in the model for numbers like X.

Fortran 90

84 Fortran 90 Student Notes

PRECISION(X)
Decimal precision in the model for X.

RADIX(X)
Base of the model for numbers like X.

RANGE(X)
Decimal exponent range in the model that includes integer, real and complex X.

TINY(X)
Smallest positive number in the model for numbers like X.

7.3 Transformational Functions
REPEAT(STRING,NCOPIES)

Concatenates NCOPIES of STRING.

TRANSFER(SOURCE,MOLD[,SIZE])
Same physical representation as SOURCE, but of type MOLD.

TRIM(STRING)
Removes trailing blanks from STRING.

7.4 Non Elemental Intrinsic Subroutines:
CALL DATE_AND_TIME([DATE][,TIME][,ZONE][VALUES])

Real-time clock reading date and time.

RANDOM_NUMBER(HARVEST)

Random numbers in range .

RANDOM_SEED([SIZE][,PUT][,GET])
Initialize or restart random number generator.

SYSTEM_CLOCK([COUNT][,COUNT_RATE][COUNT_MAX])
Integer data from real-time clock.

7.5 Array Intrinsic Procedures
Reduction

ALL(MASK[,DIM])
True if all elements true

ANY(MASK[,DIM])
True if any element true

COUNT(MASK[,DIM])
Number of true elements

MAXVAL(ARRAY[,DIM][,MASK])
Maximum element value

MINVAL(ARRAY[,DIM][,MASK])
Minimum element value

PRODUCT(ARRAY[,DIM][,MASK])
Product of array elements

SUM(ARRAY[,DIM][,MASK])
Sum of array element

0 X 1<≤

Intrinsic Procedures

Manchester and North HPC T&EC 85

Inquiry

ALLOCATED(ARRAY)
True if array allocated

LBOUND(ARRAY[,DIM])
Lower bounds of array

SHAPE(SOURCE)
Shape of array (or scalar)

SIZE(ARRAY[,DIM])
Size of array

UBOUND(ARRAY[,DIM])
Upper bounds of array

Construction

MERGE(TSOURCE,FSOURCE,MASK)
Merge arrays subject to mask

PACK(ARRAY,MASK[,VECTOR])
Pack elements into vector subject to mask

SPREAD(SOURCE,DIM,NCOPIES)
Construct an array by duplicating an array section

UNPACK(VECTOR,MASK,FIELD)
Unpack elements of vector subject to mask

Reshape

RESHAPE(SOURCE,SHAPE[,PAD][,ORDER])
Reshape array

Array Location

MAXLOC(ARRAY[,MASK])
Location of maximum element

MINLOC(ARRAY[,MASK])
Location of minimum element

Array manipulation

CSHIFT(ARRAY,SHIFT[,DIM])
Perform circular shift

EOSHIFT(ARRAY,SHIFT[,BOUNDARY][,DIM])
Perform end-off shift

TRANSPOSE(MATRIX)
Transpose matrix

Vector and matrix arithmetic

DOT_PRODUCT(VECTOR_A,VECTOR_B)
Compute dot product

MATMUL(MATRIX_A,MATRIX_B)
Matrix multiplication

Fortran 90

86 Fortran 90 Student Notes

7.6 Exercises
1. Look at the programs char_int.f90, model.f90, mod_int.f90 and con-

vert.f90 and run them.

Notice how these programs use intrinsic functions for certain purposes.

Redundant Features

Manchester and North HPC T&EC 87

8 Redundant Features

The method of removing redundant features of Fortran, as adopted by the standards
committee, was described in section 1.3, “Language Evolution”. The obsolescent list
includes features which might be removed in the next revision and should not be
used in new or revised programs. Additionally, Fortran 90 includes other redundant
features which are safer to use then those in the obsolescent list, but will probably be
included in the obsolescent list in the next version, and therefore are recommended
not to be used in new or revised programs.

The redundant features of Fortran 90 fall into five groups: Source form, Data, Control,
Procedures and Input/Output.

8.1 Source Form
The fixed source form based on the layout of a punched card has now been replaced
by the free source form and this should be used for all new programs. It is possible to
make simple modifications to fixed source form in order to produce code which is
both legal fixed and free source code.

The use of modules is recommended rather than the INCLUDE line. The INCLUDE line
contained a character literal constant indicating what text should be inserted at a
specified point or where text to be inserted should be obtained from.

8.2 Data
Fortran 77 provided two forms of real variables and constants, REAL and DOUBLE PRE-

CISION. These have been superseded by the concept of parameterised data types
which provide numerical portability, and hence DOUBLE PRECISION should no longer
be used in new programs.

The dangerous concept of implicit typing and the IMPLICIT statement should not be
used. The IMPLICIT NONE statement should be included at the beginning of every pro-
gram unit to ensure explicit declaration of all variables.

The new form of declaring variables with a double colon (::) between the type and the
list of variables is recommended. Additionally, the use of attribute forms of PARAME-
TER, DIMENSION, etc., in the type declaration, rather than the statement forms is rec-
ommended.

The DATA statement is no longer generally needed as variables may now be initialised
in a type statement. Exceptions to this are octal, hexadecimal and array section initial-
isations.

The only form of adjustable size array in Fortran 77 was the assumed-size array. In
Fortran 90 this has been superseded by the assumed-shape array, and thus the
assumed-size array should no longer be used in new programs.

COMMON blocks and BLOCK DATA should no longer be used as the use of modules obvi-
ates the need for them. Similarly the EQUIVALENCE statement has become unnecessary

Fortran 90

88 Fortran 90 Student Notes

due to the introduction of modules, dynamic storage allocation, pointers, and the
intrinsic function TRANSFER.

It is recommended that the SEQUENCE attribute is never used.

8.3 Control
The obsolescent features listed in Fortran 90 are:

• Arithmetic IF statement.

• Shared DO termination, and DO termination on a statement other than on a CON-

TINUE or an END DO statement.

• REAL and DOUBLE precision DO variables and control expressions.

• ASSIGN and assigned GO TO statements.

• Branching to END IF from outside IF block.

• Alternate RETURN.

• PAUSE statement.

These should never be used in new or revised programs. Except for alternate RETURN

and PAUSE, these can be replaced by the IF statement, DO and CASE control constructs,
and EXIT and CYCLE statements

With the introduction of modern control constructs and the character string format
specifications, the need for labels is redundant.

The DO construct and EXIT and CYCLE statements replace the use of the CONTINUE

statement to end a DO loop.

GO TO and computed GO TO statements should be avoided, using IF, DO and CASE

constructs, and EXIT and CYCLE statements instead.

The DO WHILE statement was introduced in Fortran 90. This functionality can equally
be provided using the DO loop construct and EXIT statement, and this form is recom-
mended.

8.4 Procedures
Intrinsic functions using specific names for different data types have been superseded
by generic versions. Note that the specific names are required when an intrinsic func-
tion is being used as an actual argument.

The ENTRY statement allows a procedure to have more than one entry point. The intro-
duction of modules, where each entry point becomes a module procedure, has made
the ENTRY statement unnecessary.

The statement function provided a means of defining and using a one-line function.
This has been superseded by the concept of internal procedures.

The use of module procedures and internal procedures means that it is not necessary
to use external procedures. Thus, external procedures and the EXTERNAL statement are
effectively redundant.

8.5 Input/Output
The obsolescent features listed in Fortran 90 are:

• Assigned Format specifiers (replaced by the character string format specifica-
tions).

Redundant Features

Manchester and North HPC T&EC 89

• H edit descriptor (replaced by the character constant edit descriptor A).

Assigned format specifiers should be replaced by character string format specifica-
tions.

The END, EOR and ERR specifiers are used when exceptional conditions occur in input
and output. It is recommended that the IOSTAT specifier is used instead of these.

Namelist input/output is a poorly designed feature and it is recommended that
namelist should not be used unless absolutely necessary.

Finally, it is recommended that six edit descriptors should not be used, namely, D, BN,
BZ, P, G and X.

The D edit descriptor has been superseded by the E edit descriptor, and the BN and BZ

edit descriptors have both been replaced by the BLANK specifier.

The P edit descriptor allows numeric data to be scaled on either input or output, how-
ever this can lead to unnecessary confusion and is therefore best avoided.

The G edit descriptor is a generalized edit descriptor which can be used to input or
output values of any intrinsic type. However, the use of I, E, EN, F, L or A edit descrip-
tors is preferable as these provide some check that the data types are correct.

The X edit descriptor has the same effect as the TR edit descriptor, and the latter is rec-
ommended.

Fortran 90

90 Fortran 90 Student Notes

Further Development

Manchester and North HPC T&EC 91

9 Further Development

9.1 Fortran 95
Fortran 95 will be a fairly small update to Fortran 90, consisting mainly of clarifica-
tions and corrections to Fortran 90. The next major changes are expected in Fortran
2000.

Fortran 95 will, however, provide some new features including:

• FORALL statement and construct

This allows for more flexible array assignments. For example:

FORALL (i=1:n) a(i,i)=i

FORALL (i=1:n,j=1:n,y(i,j)/=0 .AND. i/=j) x(i,j)=1.0/y(i,j)

FORALL (i=1:n)
a(i,i)=i
b(i)=i*i

END

• PURE attribute
Allowing PURE procedures safe for use in FORALL statements.

• CPU time intrinsic inquiry function

CALL CPU_TIME(t1)

• Allocatable dummy arguments and results

• Nested WHERE

WHERE (mask1)
...

WHERE (mask2)
...
ELSEWHERE
...
ENDWHERE

ELSEWHERE
...
ENDWHERE

• Object Initialisation
Initial pointer or type default status.

REAL, POINTER :: P(:)=>NULL()

Fortran 90

92 Fortran 90 Student Notes

TYPE string
CHARACTER, POINTER :: ch(:)=>NULL()

ENDTYPE

9.2 Parallel Computers
It is important, nowadays, that a new programming language standard should permit
efficient compilation and execution of code on supercomputers as well as conven-
tional computers. Fortran 90 is said to be efficient on conventional computers and on
vector processors, but less efficient on parallel computers. However, the limelight of
supercomputing research has recently shifted away from vector computers and
towards parallel and “massively” parallel computers. This interest in parallel comput-
ers has lead to the development of two de facto standards:

• High Performance Fortran (HPF).

• Message Passing Interface (MPI).

9.2.1 High Performance Fortran

The goal of High Performance Fortran is to provide a set of language extensions to
Fortran 90 to support:

• Data parallel programming.

• Top performance on MIMD and SIMD computers with non-uniform memory
access.

• Code turning for various architectures.

• Minimal deviation from other standards.

• Define open interfaces to other languages.

• Encourage input from the high performance computing community.

Fortran 90 supports data parallel programming through the array operations and
intrinsics. HPF extends this support with:

• Compiler directives for data alignment and distribution.

• Concurrent execution features using the FORALL statement.

• The INDEPENDENT directive which allows the programmer to provide the com-
piler with information about the behaviour of a DO loop or FORALL statement.

• A number of intrinsic functions to enquire about machine specific details.

• A number of extrinsic functions which provide an escape mechanism from HPF.

• A library of routines to support global operations.

9.2.2 Message Passing Interface

MPI is a proposed standard Message Passing Interface for:

• Explicit message passing.

• Application programs.

• MIMD distributed memory concurrent computers.

• Workstation networks.

Such a standard is required for several reasons:

• Portability and ease-of-use.

Further Development

Manchester and North HPC T&EC 93

• Time right for standard.

• Library construction.

• Prerequisite for development of concurrent software industry.

• Provides hardware vendors with well-defined set of routines that they must im-
plement efficiently.

MPI contains:

• Point-to-point message passing.

• Blocking and non-blocking sending and receiving in 3 modes: ready,
standard and synchronous.

• Generalising the description of buffers, the type and the process identi-
fier, heterogeneity.

• Collective communication routines.

• Data movement (one-all and all-all versions of the broadcast, scatter,
and gather routines).

• Global computation (reduce and scan routines).

• Support for process groups and communication contexts.

• Communicators combine context and group for message security and
thread safety.

• Support for application topologies (grids and graphs).

Fortran 90

94 Fortran 90 Student Notes

References

Manchester and North HPC T&EC 95

Appendix A: References

Adams, J. C. et. al. (1992) Fortran 90 Handbook. McGraw-Hill. ISBN 0-07-000406-4

Brainerd, W. S. et. al., (1994) Programmer’s Guide to Fortran 90. 2nd edition, Unicomp.
ISBN 0-07-000248-7

Buckley, A. G. (1993) Conversion to Fortran 90: A Case Study. Via Web.

Counihan, M. (1991) Fortran 90. Pitman. ISBN 0-273-03073-6

Dodson, Z. (1994) A Fortran 90 Tutorial. ViaWeb.

Einarsson, B. and Shokin, Y. (1993) Fortran 90 for the Fortran 77 Programmer. Via Web.

Ellis, T. M. R. et. al., Fortran 90 Programming. Wesley. ISBN 0-201-54446-6

Hahn, B. D. (1994) Fortran 90 for Scientists and Engineers. Edward Arnold. ISBN: 0-340-
60034-9

Kerrigan, J. (1993) Migrating to Fortran 90. O’Reilly and Associates. ISBN 1-56592-049-
X

Metcalf, M. (1990) Fortran 90 Tutorial. Via Web.

Metcalf, M. & Reid, J. (1992) Fortran 90 Explained. Oxford University Press. ISBN: 0-19-
853772-7

Morgan, J. S. & Schonfelder, J. L. (1993) Programming in Fortran 90. Alfred Waller Ltd.
ISBN 1-872474-06-3

Sawyer, M. A Summary of Fortran 90. Via Web.

Smith, I M. Programming in Fortran 90. Wiley. 0471-94185-9

For articles obtained via World Wide Web, see URL http://www.lpac.ac.uk/SEL-HPC/Articles/
GeneratedHtml/hpc.f90.html

Fortran 90

96 Fortran 90 Student Notes

Fortran 90 (Edition 3.0)

Student Notes Comment Sheet

Please send comments you have on any of the Fortran 90 materials to:

Andrew Grant
Manchester Computing Centre
The University of Manchester
Manchester, M13 9PL

Alternatively, email hpc-info@mcc.ac.uk

Name: ...

Postal Address: ...

..

Email Address: ...

Comments:

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

✃

