Cooling Load Rules of Thumb

6.01 Offices, Commercial

A. General:

1. Total Heat 300-400 Sq.Ft./Ton; (Range 230-520)
2. Total Heat $\quad 30-40 \mathrm{Btuh} / \mathrm{Sq} . F \mathrm{Ft}$; (Range 23-52)
3. Room Sens. Heat $25-28$ Btuh/Sq.Ft.; (Range 19-37)
4. SHR 0.75-0.93
5. Perimeter Spaces 1.0-3.0 CFM/Sq.Ft.
6. Interior Spaces $0.5-1.5$ CFM/Sq.Ft.
7. Building Block CFM $1.0-1.5$ CFM/Sq.Ft.
8. Air Change Rate $4-10 \mathrm{AC} / \mathrm{Hr}$.
B. Large, Perimeter:
9. Total Heat $225-275$ Sq.Ft./Ton
10. Total Heat $43-53$ Btuh/Sq.Ft.
C. Large, Interior:
11. Total Heat $300-350$ Sq.Ft./Ton
12. Total Heat $34-40$ Btuh/Sq.Ft.
D. Small:
13. Total Heat $325-375$ Sq.Ft./Ton
14. Total Heat $32-37$ Btuh/Sq.Ft.

6.02 Banks, Court Houses, Municipal Buildings, Town Halls

A. Total Heat	$200-250$ Sq.Ft./Ton	(Range 160-340)
B. Total Heat	$48-60$ Btuh/Sq.Ft.	(Range 35-75)
C. Room Sens. Heat	$28-38$ Btuh/Sq.Ft.	(Range 21-48)
D. SHR	$0.75-0.90$	
E. Air Change Rate	$4-10 \mathrm{AC} / \mathrm{Hr}$.	

6.03 Police Stations, Fire Stations, Post Offices

A. Total Heat 250-350 Sq.Ft./Ton (Range 200-400)
B. Total Heat 34-48 Btuh/Sq.Ft. (Range 30-60)
C. Room Sens. Heat 25-35 Btuh/Sq.Ft. (Range 20-40)
D. SHR $\quad 0.75-0.90$
E. Air Change Rate $\mathbf{4 - 1 0} \mathbf{A C} / \mathrm{Hr}$.

6.04 Precision Manufacturing

A. Total Heat	$50-300$ Sq.Ft./Ton
B. Total Heat	$40-240$ Btuh/Sq.Ft.
C. Room Sens. Heat	$32-228$ Btuh/Sq.Ft.
D. SHR	$0.80-0.95$
E. Air Change Rate	$10-50 \mathrm{AC} / \mathrm{Hr}$

6.05 Computer Rooms

A. Total Heat	$50-150$ Sq.Ft./Ton
B. Total Heat	$80-240$ Btuh/Sq.Ft.
C. Room Sens. Heat	$64-228$ Btuh/Sq.Ft.
D. SHR	$0.80-0.95$
E. Air Flow	$2.0-4.0 \mathrm{CFM} / \mathrm{Sq} . \mathrm{Ft}$
F. Air Change Rate	$15-20 \mathrm{AC} / \mathrm{Hr}$

6.06 Restaurants

A. Total Heat 100-250 Sq.Ft./Ton (Range 75-300)
B. Total Heat 48-120 Btuh/Sq.Ft. (Range 40-155)
C. Room Sens. Heat 21-62 Btuh/Sq.Ft. (Range 20-80)
D. SHR $\quad 0.65-0.80$
E. Air Flow 1.5-4.0 CFM/Sq.Ft.
F. Air Change Rate $\mathbf{8 - 1 2} \mathbf{A C} / \mathbf{H r}$.

6.07 Kitchens (Depends Primarily on Kitchen Equipment)

A. Total Heat	$150-350$ Sq.Ft./Ton	(At 85° F. Space)
B. Total Heat	$34-80$ Btuh/Sq.Ft.	(At 85° F. Space)
C. Room Sens. Heat	$20-56$ Btuh/Sq.Ft.	(At 85° F. Space)
D. SHR	$0.60-0.70$	
E. Air Flow	$1.5-2.5 \mathrm{CFM} /$ Sq.Ft.	
F. Air Change Rate	$12-15 \mathrm{AC} / \mathrm{Hr}$.	

6.08 Cocktail Lounges, Bars, Taverns, Clubhouses, Nightclubs

A. Total Heat	$150-200$ Sq.Ft./Ton	(Range 75-300)
B. Total Heat	$60-80$ Btuh/Sq.Ft.	(Range 40-155)
C. Room Sens. Heat	$27-40$ Btuh/Sq.Ft.	(Range 20-80)
D. SHR	$0.65-0.80$	
E. Spaces	$1.5-4.0 \mathrm{CFM} /$ Sq.Ft.	
F. Air Change Rate	$15-20 \mathrm{AC} / \mathrm{Hr}$.	Cocktail Lounges, Bars, Taverns, Clubhouses
G. Air Change Rate	$20-30 \mathrm{AC} / \mathrm{Hr}$.	Night Clubs

6.09 Hospital Patient Rooms, Nursing Home Patient Rooms

A. Total Heat	$250-300$ Sq.Ft./Ton	(Range 200-400)
B. Total Heat	$\mathbf{4 0 - 4 8}$ Btuh/Sq.Ft.	(Range 30-60)
C. Room Sens. Heat	$32-46$ Btuh/Sq.Ft.	(Range 25-50)
D. SHR	$0.75-0.85$	

6.10 Buildings w/100\% OA Systems (i.e., Laboratories, Hospitals)

A. Total Heat 100-300 Sq.Ft./Ton
B. Total Heat 40-120 Btuh/Sq.Ft.

6.11 Medical/Dental Centers, Clinics, and Offices

A. Total Heat	$250-300$ Sq.Ft./Ton	(Range 200-400)
B. Total Heat	$40-48 \mathrm{Btuh} / \mathrm{Sq} . \mathrm{Ft}$.	(Range 30-60)
C. Room Sens. Heat	$32-46 \mathrm{Btuh} /$ Sq.Ft.	(Range 25-50)
D. SHR	$0.75-0.85$	
E. Air Change Rate	$8-12 \mathrm{AC} / \mathrm{Hr}$.	

6.12 Residential

A. Total Heat	$500-700$ Sq.Ft./Ton
B. Total Heat	$17-24$ Btuh/Sq.Ft.
C. Room Sens. Heat	$12-20$ Btuh/Sq.Ft.
D. SHR	$0.80-0.95$

6.13 Apartments (Eff., 1 Room, 2 Room)

A. Total Heat	$350-450$ Sq.Ft./Ton	(Range 300-500)
B. Total Heat	$27-34$ Btuh/Sq.Ft.	(Range 24-40)
C. Room Sens. Heat	$22-30$ Btuh/Sq.Ft.	(Range 20-35)
D. SHR	$0.80-0.95$	

6.14 Motel and Hotel Public Spaces

A. Total Heat	$250-300$ Sq.Ft./Ton	(Range 160-375)
B. Total Heat	$40-48$ Btuh/Sq.Ft.	(Range 32-74)
C. Room Sens. Heat	$32-46$ Btuh/Sq.Ft.	(Range 25-60)
D. SHR	$0.75-0.90$	

6.15 Motel and Hotel Guest Rooms, Dormitories

A. Total Heat	$400-500$ Sq.Ft./Ton	(Range 300-600)
B. Total Heat	$24-30$ Btuh/Sq.Ft.	(Range 20-40)
C. Room Sens. Heat	$20-25$ Btuh/Sq.Ft.	(Range 15-35)
D. SHR	$0.80-0.95$	

6.16 School Classrooms

A. Total Heat	$225-275$ Sq.Ft./Ton	(Range 150-350)
B. Total Heat	$43-53$ Btuh/Sq.Ft.	(Range 35-80)
C. Room Sens. Heat	$25-42$ Btuh/Sq.Ft.	(Range 20-65)
D. SHR	$0.65-0.80$	
E. Air Change Rate	$4-12 \mathrm{AC} / \mathrm{Hr}$.	

6.17 Dining Halls, Lunch Rooms, Cafeterias, Luncheonettes

A. Total Heat 100-250 Sq.Ft./Ton (Range 75-300)
B. Total Heat 48-120 Btuh/Sq.Ft. (Range 40-155)
C. Room Sens. Heat 21-62 Btuh/Sq.Ft. (Range 20-80)
D. SHR $\quad 0.65-0.80$
E. Spaces $\quad 1.5-4.0$ CFM/Sq.Ft.
F. Air Change Rate $12-15 \mathrm{AC} / \mathrm{Hr}$.

6.18 Libraries, Museums

A. Total Heat	$250-350$ Sq.Ft./Ton	(Range 160-400)
B. Total Heat	$34-48$ Btuh/Sq.Ft.	(Range 30-75)
C. Room Sens. Heat	$22-32$ Btuh/Sq.Ft.	(Range 20-50)
D. SHR	$0.80-0.90$	
E. Air Change Rate	$8-12 \mathrm{AC} / \mathrm{Hr}$.	

6.19 Retail, Department Stores

A. Total Heat	$200-300$ Sq.Ft./Ton	(Range 200-500)
B. Total Heat	$40-60$ Btuh/Sq.Ft.	(Range 24-60)
C. Room Sens. Heat	$32-43$ Btuh/Sq.Ft.	(Range 16-43)
D. SHR	$0.65-0.90$	
E. Air Change Rate	$6-10 \mathrm{AC} / \mathrm{Hr}$.	

6.20 Drug, Shoe, Dress, Jewelry, Beauty, Barber, and Other Shops

A. Total Heat	$175-225$ Sq.Ft./Ton	(Range 100-350)
B. Total Heat	$53-69$ Btuh/Sq.Ft.	(Range 35-115)
C. Room Sens. Heat	$23-54$ Btuh/Sq.Ft.	(Range 15-90)
D. SHR	$0.65-0.90$	
E. Air Change Rate	$6-10 \mathrm{AC} / \mathrm{Hr}$.	

6.21 Supermarkets

A. Total Heat	$250-350$ Sq.Ft./Ton	(Range 150-400)
B. Total Heat	$34-48$ Btuh/Sq.Ft.	(Range 30-80)
C. Room Sens. Heat	$25-40$ Btuh/Sq.Ft.	(Range 22-67)
D. SHR	$0.65-0.85$	
E. Air Change Rate	$4-10 \mathrm{AC} / \mathrm{Hr}$.	

6.22 Malls, Shopping Centers

A. Total Heat $150-350$ Sq.Ft./Ton (Range 150-400)
B. Total Heat 34-80 Btuh/Sq.Ft. (Range 30-80)
C. Room Sens. Heat 25-67 Btuh/Sq.Ft. (Range 22-67)
D. SHR $\quad 0.65-0.85$
E. Air Change Rate 6-10 AC/Hr.

6.23 Jails

A. Total Heat	$350-450$ Sq.Ft./Ton	(Range 300-500)
B. Total Heat	$27-34$ Btuh/Sq.Ft.	(Range 24-40)
C. Room Sens. Heat	$22-30$ Btuh/Sq.Ft.	(Range 20-35)
D. SHR	$0.80-0.95$	

6.24 Auditoriums, Theaters

A. Total Heat
0.05-0.07 Tons/Seat
B. Total Heat
600-840 Btuh/Seat
C. Room Sens. Heat
325-385 Btuh/Seat
D. SHR
$0.65-0.75$
E. Air Flow
15-30 CFM/Seat
F. Air Change Rate
8-15 AC/Hr.

6.25 Churches

A. Total Heat	$0.04-0.06$ Tons/Seat
B. Total Heat	$480-720$ Btuh/Seat
C. Room Sens. Heat	$260-330$ Btuh/Seat
D. SHR	$0.65-0.75$
E. Air Flow	$15-30 \mathrm{CFM} /$ Seat
F. Air Change Rate	$8-15 \mathrm{AC} / \mathrm{Hr}$

6.26 Bowling Alleys

A. Total Heat	$1.5-2.5$ Tons/Alley
B. Total Heat	$18,000-30,000$ Btuh/Alley
C. Air Change Rate	$10-15 \mathrm{AC} / \mathrm{Hr}$

6.27 All Spaces

A. Total Heat
300-500 CFM/Ton @ 20° F. Δ T
B. Total Heat
400 CFM/Ton $\pm 20 \%$ @ 20° F. Δ T
C. Perimeter Spaces
1.0-3.0 CFM/Sq.Ft.
D. Interior Spaces
0.5-1.5 CFM/Sq.Ft.
E. Building Block CFM
1.0-1.5 CFM/Sq.Ft.
F. Air Change Rate
4 AC/Hr. Minimum

Total heat includes ventilation. Room sensible heat does not include ventilation.

6.28 Cooling Load Calculation Procedure

A. Obtain building characteristics:

1. Materials
2. Size
3. Color
4. Shape
5. Location
6. Orientation, N, S, E, W, NE, SE, SW, NW, etc.
7. External/Internal shading
8. Occupancy type and time of day
B. Select outdoor design weather conditions:
9. Temperature
10. Wind direction and speed
11. Conditions in selecting outdoor design weather conditions:
a. Type of structure, heavy, medium or light
b. Is structure insulated?
c. Is structure exposed to high wind?
d. Infiltration or ventilation load
e. Amount of glass
f. Time of building occupancy
g. Type of building occupancy
h. Length of reduced indoor temperature
i. What is daily temperature range, minimum/maximum?
j. Are there significant variations from ASHRAE weather data?
k. What type of heating devices will be used?
12. Expected cost of fuel
13. See Part 16, Energy Conservation and Design Conditions, for code restrictions on selection of outdoor design conditions.
C. Select indoor design temperature to be maintained in each space. See Part 16, Energy Conservation and Design Conditions, for code restrictions on selection of indoor design conditions.
D. Estimate temperatures in un-conditioned spaces.
E. Select and/or compute U-values for walls, roof, windows, doors, partitions, etc.
F. Determine area of walls, windows, floors, doors, partitions, etc.
G. Compute conduction heat gains for all walls, windows, floors, doors, partitions, skylights, etc.
H. Compute solar heat gains for all walls, windows, floors, doors, partitions, skylights, etc.
I. Infiltration heat gains are generally ignored unless space temperature and humidity tolerance are critical.
J. Compute ventilation heat gain required.
K. Compute internal heat gains from lights, people, and equipment.
L. Compute sum of all heat gains indicated in items $\mathbf{G}, \mathrm{H}, \mathrm{I}, \mathrm{J}$, and K above
M. Include morning cool-down for buildings with intermittent use and night set up.

See Part 16, Energy Conservation and Design Conditions, for code restrictions on excess HVAC system capacity permitted for morning cool-down.
N. Consider equipment and materials which will be brought into building above inside design temperature.
O. Cooling load calculations should be conducted using industry accepted methods to determine actual cooling load requirements.

6．29 Cooling Load Peak Time Estimate

MONTH OF PEAK ROOM COOLING LOAD FOR VARIOUS EXPOSURES										
WINDOW CHARACTERISTICS			PROBABLE MONTH OF PEAK ROOM COOLING LOAD							
$\begin{gathered} \% \\ \text { GLASS } \end{gathered}$	SHADE COEF	OVER－ HANG	N	S	E	W	NE	SE	SW	NW
25	0.4	0	JULY	SEPT．	JLY	JULY	JULY	SEPT．	SEPT．	תLY
25	0.4	1：2	JULY	OCT．	JUY	AUG．	JULY	SEPT．	SEPT．	Juy
25	0.4	1：1	JUY	OCT．	JUY	ת几Y	JULY	SEPT．	OCT．	J几Y
25	0.6	0	JULY	SEPT．	JLY	JULY	JULY	SEPT．	SEPT．	JLY
25	0.6	1：2	JULY	OCT．	JULY	AUG．	JULY	SEPT．	SEPT．	JULY
25	0.6	1：1	JUY	DEC．	JLY	SEPT．	JUL	SEPT．	OCT．	JLY
50	0.4	0	JULY	SEPT．	ルLY	J几Y	JULY	SEPT．	SEPT．	JUY
50	0.4	1：2	JUY	OCT．	JULY	AUG．	JLY	SEPT．	SEPT．	JLY
50	0.4	1：1	JULY	DEC．	JULY	SEPT．	JULY	SEPT．	OCT，	JUY
50	0.6	0	JULY	OCT．	JULY	JULY	JULY	SEPT	SEPT．	תULY
50	0.6	$1: 2$	JルY	DEC．	JULY	AUG．	JLY	SEPT．	OCT．	JLY
50	0.6	1：1	תLY	DEC．	JULY	SEPT．	JULY	SEPT．	DEC．	JUY

Notes：

1．Percent glass is percentage of gross wall area for the particular exposure．
2．Shading coefficient refers to the overall shading coefficient．Shading coefficient of 0.4 is approxi－ mately equal to double pane glass with heat absorbing plate out and regular plate in，combined with medium color venetian blinds．
3．Although the room peak for south，southeast，and southwest exposures is September or later，the system peak will more than likely be in July．
4．Value for overhang is the ratio of the depth of the overhang to height of the window with the over－ hang at the same elevation as the top of the window．
5．The roof will peak in June or July．

