Specification for Line Pipe

API SPECIFICATION 5L FORTY-FIRST EDITION, APRIL 1, 1995

> American Petroleum Institute 1220 L Street, Northwest Washington, D.C. 20005

- -

Copyright by the American Petroleum Institute Wed Apr 12 11:22:44 2000

Specification for Line Pipe

Exploration and Production Department

API SPECIFICATION 5L FORTY-FIRST EDITION, APRIL 1, 1995

> American Petroleum Institute

SPECIAL NOTES

API publications necessarily address problems of a general nature. With respect to particular circumstances, local, state, and federal laws and regulations should be reviewed.

API is not undertaking to meet the duties of employers, manufacturers, or suppliers to warn and properly train and equip their employees, and others exposed, concerning health and safety risks and precautions, nor undertaking their obligations under local, state, or federal laws.

Information concerning safety and health risks and proper precautions with respect to particular materials and conditions should be obtained from the employer, the manufacturer or supplier of that material, or the material safety data sheet.

Nothing contained in any API publication is to be construed as granting any right, by implication or otherwise, for the manufacture, sale, or use of any method, apparatus, or product covered by letters patent. Neither should anything contained in the publication be construed as insuring anyone against liability for infringement of letters patent.

Generally, API standards are reviewed and revised, reaffirmed, or withdrawn at least every five years. Sometimes a one-time extension of up to two years will be added to this review cycle. This publication will no longer be in effect five years after its publication date as an operative API standard or, where an extension has been granted, upon republication. Status of the publication can be ascertained from the API Authoring Department [telephone (214) 953-1101]. A catalog of API publications and materials is published annually and updated quarterly by API, 1220 L Street, N.W., Washington, D.C. 20005.

This document was produced under API standardization procedures that ensure appropriate notification and participation in the developmental process and is designated as an API *standard*. Questions concerning the interpretation of the content of this standard or comments and questions concerning the procedures under which this standard was developed should be directed in writing to the director of the Exploration and Production Department, American Petroleum Institute, 700 North Pearl, Suite 1840, Dallas, Texas 75201. Requests for permission to reproduce or translate all or any part of the material published herein should also be addressed to the director.

API publications may be used by anyone desiring to do so. Every effort has been made by the Institute to assure the accuracy and reliability of the data contained in them; however, the Institute makes no representation, warranty, or guarantee in connection with this publication and hereby expressly disclaims any liability or responsibility for loss or damage resulting from its use or for the violation of any federal, state, or municipal regulation with which this publication may conflict.

API standards are published to facilitate the broad availability of proven, sound engineering and operating practices. These standards are not intended to obviate the need for applying sound engineering judgment regarding when and where these standards should be utilized. The formulation and publication of API standards is not intended in any way to inhibit anyone from using any other practices.

Any manufacturer marking equipment or materials in conformance with the marking requirements of an API standard is solely responsible for complying with all the applicable requirements of that standard. API does not represent, warrant, or guarantee that such products do in fact conform to the applicable API standard.

Copyright © 1994 American Petroleum Institute

CONTENTS

		Page
1	SCOPE	1
2	REFERENCES	1
3	DEFINITIONS	2
4	INFORMATION TO BE SUPPLIED BY THE PURCHASER	2
5	PROCESS OF MANUFACTURE AND MATERIAL 5.1 Process of Manufacture 5.2 Cold Expansion 5.3 Material 5.4 Heat Treatment 5.5 Skelp End Welds—Helical Seam Pipe 5.6 Traceability	3 5 5 5 5 5 5
6	MATERIAL REQUIREMENTS 6.1 Chemical Properties 6.2 Mechanical Properties	5 5 7
7	DIMENSIONS, WEIGHTS, LENGTHS, DEFECTS, AND END FINISHES 7.1 General—Dimensions and Weights 7.2 Diameter 7.3 Wall Thickness 7.4 Weight 7.5 Length 7.6 Straightness 7.7 Jointers 7.8 Workmanship and Defects 7.9 Pipe Ends	9 9 9 9 10 10 10 10 12
8	COUPLINGS	36
9	INSPECTION AND TESTING 9.1 Test Equipment 9.2 Testing of Chemical Composition 9.3 Testing of Mechanical Properties 9.4 Hydrostatic Tests 9.5 Dimensional Testing 9.6 Visual Inspection 9.7 Nondestructive Inspection 9.8 Test Methods 9.9 Invalidation of Tests 9.10 Retests	37 37 39 42 42 42 42 49 50
10	MARKING 10.1 General	

10.2 Location of Markings 10.3 Sequence of Markings 10.4 Bundle Identification 10.5 Length 10.6 Couplings 10.7 Die Stamping 10.8 Thread Identification 10.9 Thread Certification 10.10 Pipe Processor Markings	52 53 53 53 53 53 54 54				
 11 COATING AND PROTECTION	54				
12 DOCUMENTS 12.1 Certification 12.2 Retention of Records	54				
APPENDIX A—SPECIFICATION FOR WELDED					
JOINTERS (NORMATIVE)	57				
APPENDIX B—REPAIR OF DEFECTS BY WELDING (NORMATIVE)					
APPENDIX C—REPAIR WELDING PROCEDURE (NORMATIVE)					
APPENDIX D—ELONGATION TABLE (NORMATIVE)					
APPENDIX E—DIMENSIONS, WEIGHTS, AND TEST PRESSURES—	05				
METRIC EQUIVALENTS (NORMATIVE)	60				
APPENDIX F—SUPPLEMENTARY REQUIREMENTS (NORMATIVE)					
APPENDIX G—GUIDED-BEND TEST JIG	89				
	07				
DIMENSIONS (NORMATIVE)					
APPENDIX H—PURCHASER INSPECTION (NORMATIVE)	113				
APPENDIX I—MARKING INSTRUCTIONS FOR					
API LICENSEES (NORMATIVE)	115				
APPENDIX J-METRIC (SI) UNIT CONVERSIONS AND ROUNDING					
PROCEDURES (NORMATIVE)	119				
Figures					
1-Belled End for Bell and Spigot Joint					
2—Line Pipe and Coupling					
3—Orientation of Tensile Test Specimens					
4—Tensile Test Specimens	40				
5—Flattening Tests	41				
6—API Standard Penetrameter					
7—Examples of Maximum Distribution Patterns of Indicated					
Circular Slag-Inclusion and Gas-Pocket-Type Discontinuities					
8-Examples of Maximum Distribution Patterns of Indicated					
Elongated Slag-Inclusive-Type Discontinuities	48				
9—Reference Standards	49				
10—Guided-Bend Test Specimen					
11-Jig for Guided-Bend Test	50				
C-1—Transverse Tensile Test Specimen	62				
C-2-Guided-Bend Test Specimen					
C-3—Jig for Guided-Bend Test					
C-4—Nick-Break Test Specimen					
F-1—Reference Standards					
F-2—Impact Test Specimen Tapered End Allowance					
F-3—Drop Weight Tear Test Specimen					

_

API SPEC*5L 95 🖿 0732290 0541143 327 📟

Tables

1—Process of Manufacture	3
2-Chemical Requirements for Heat Analyses by Percentage of Weight	6
3—Tensile Requirements	7
4—Standard-Weight Threaded Line Pipe Dimensions,	
Weights, and Test Pressures	13
5—Extra-Strong Threaded Line Pipe Dimensions,	
Weights, and Test Pressures	14
6A—Plain-End Line Pipe Dimensions, Weights, and Test	
Pressures for Nominal Sizes 1/8 Through 11/2	15
6B—Plain-End Line Pipe Dimensions, Weights, and Test	
Pressures for Sizes 2 ³ / ₈ Through 5 ⁹ / ₁₆	16
6C—Plain-End Line Pipe Dimensions, Weights, and Test	
Pressures for Sizes 6 ⁵ / ₈ Through 80	20
7Tolerances for Diameter of Pipe Body	34
8—Tolerances for Diameter at Pipe Ends	34
9—Tolerances for Wall Thickness	34
10—Tolerances for Weight	35
11—Tolerances on Lengths	35
12Coupling Dimensions, Weights, and Tolerances	36
13-Frequency of Tensile Testing	38
14—API Standard 4 Percent Penetrameters	44
15—API Standard 2 Percent Penetrameters	44
16—ISO Wire 4 Percent Penetrameters	45
17—ISO Wire 2 Percent Penetrameters	45
18-Elongated Slag-Inclusion-Type Discontinuities	46
19-Circular Slag-Inclusion and Gas-Pocket-Type Discontinuities	46
20—Acceptance Limits	48
21—Retention of Records	55
C-1—Guided-Bend Test Jig Dimensions	63
D-1—Elongation Table	66
E-1A—Plain-End Line Pipe Dimensions, Weights, and Test	
Pressures for Sizes ¹ / ₈ Through 1 ¹ / ₂ (Metric Units)	70
E-1B-Plain-End Line Pipe Dimensions, Weights, and Test	
Pressures for Sizes 2 ³ / ₈ Through 5 ⁹ / ₁₆ (Metric Units)	71
E-1C-Plain-End Line Pipe Dimensions, Weights, and Test	
Pressures for Sizes 6 ⁵ / ₈ Through 80 (Metric Units)	75
F-1-Minimum Wall for Transverse Charpy V-Notch Specimens	92
F-2—Dimensions, Weights, and Test Pressures for TFL Pipe	93
G-1—Guided-Bend Test Jig Dimensions	98
C C	

FOREWORD

Specification 5L covers seamless and welded steel line pipe. It includes standard-weight and extra-strong threaded line pipe; standard-weight plain-end, regular-weight plain-end, special plain-end, extra-strong plain-end, and double-extra-strong plain-end pipe; and bell and spigot and through-the-flow line (TFL) pipe.

The purpose of this specification is to provide standards for pipe suitable for use in conveying gas, water, and oil in both the oil and natural gas industries.

This specification is under the jurisdiction of the Committee on Standardization of Tubular Goods and includes changes to the previous edition approved by letter ballot through December 1993. Specifications 5LS and 5LX have been incorporated into this edition of Specification 5L. The last editions of Specifications 5LS and 5LX published in March 1982 have been withdrawn.

The bar notations identify parts of this standard that have been changed from the previous API edition.

This standard shall become effective on the date printed on the cover but may be used voluntarily from the date of distribution.

Specification for Line Pipe

1 Scope

1.1 This specification covers seamless and welded steel line pipe. It includes standard-weight and extra-strong threaded line pipe; and standard-weight plain-end, regular-weight plain-end, special plain-end, extra-strong plain-end, and double-extra-strong plain-end pipe; as well as bell and spigot and through-the-flowline (TFL) pipe.

The purpose of this specification is to provide standards for pipe suitable for use in conveying gas, water, and oil in both the oil and natural gas industries.

1.2 Dimensional requirements on threads and thread gauges, stipulations on gauging practice, gauge specifications and certification, as well as instruments and methods for inspection of threads are given in API Standard 5B and are applicable to products covered by this specification.

Grades covered by this specification are A25, A, B, X42, X46, X52, X56, X60, X65, X70, and X80 and grades intermediate to the Grades X42 and higher listed (see note). The chemical composition and mechanical properties of intermediate grades that are subject to agreement between the purchaser and the manufacturer must be consistent with the corresponding requirements for the grades to which the material is intermediate.

Note: The grade designations used herein for Grades A and B do not include reference to the specified minimum yield strength. Other grade designations used herein comprise the letter A or X followed by the first two digits of the specified minimum yield strength.

1.3 Pipe manufactured as Grade X60 or higher shall not be substituted for pipe ordered for Grade X52 or lower without purchaser approval.

1.4 Although plain-end line pipe meeting this specification is primarily intended for field makeup by circumferential welding, the manufacturer will not assume responsibility for field welding.

1.5 For regular-weight and special plain-end pipe (special weight) shown in Tables 6A, 6B, and 6C and for standard-weight threaded pipe larger than nominal size 12, the size designations used herein are outside diameter sizes. For all other pipe, the size designations are nominal pipe sizes. In the text of this specification, pipe size limits (or size ranges) are outside diameter sizes except where stated to be nominal. These outside diameter size limits and ranges also apply to the corresponding nominal sizes.

1.6 Class II steel is rephosphorized and probably has better threading properties than Class I. Because Class II has higher chemical properties than Class I, it may be somewhat more difficult to bend.

1.7 U.S. customary units are used in this specification; metric (SI) units are shown in parentheses in the text and in many tables. See Appendix J for specific information about rounding procedures and conversion factors.

2 References

2.1 This specification includes by reference, either in total or in part, the latest editions of the following API and industry standards:

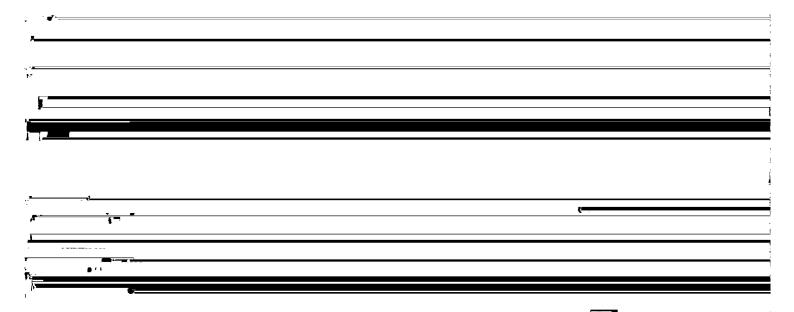
API

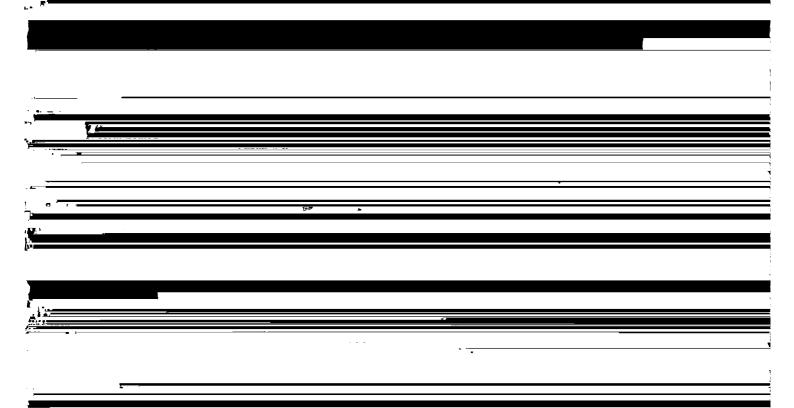
- RP 5L3Recommended Practice for Conducting
Drop-Weight Tear Tests on Line PipeStd 5BSpecification for Threading, Gauging, and
Thread Inspection of Casing, Tubing, and
- Line Pipe Threads Std 1104 Welding Pipelines and Related Facilities

ASME¹

Boiler and Pressure Vessel Code, Section IX, "Welding and Brazing Qualifications"

ASTM²


- A370 Mechanical Testing of Steel Products, Annex II—Steel Tubular Products
- A751 Methods, Practices, and Definitions for Chemical Analysis of Steel Products
 - E 4 Practices for Load Verification of Testing Machines
 - E 8 Test Methods for Tension Testing of Metallic Materials
- E 29 Practice for Using Significant Digits in Test Data to Determine Conformance With Specifications
- E 83 Practice for Verification and Classification of Extensometers


2.2 Requirements of other standards included by reference in this specification are essential to the safety and interchangeability of the equipment produced.

2.3 Other nationally or internationally recognized standards shall be submitted to and approved by API for inclusion in this specification prior to their use as equivalent standards.

¹American Society of Mechanical Engineers, 22 Law Drive, Box 2300, Fairfield, New Jersey 07007-2300.

²ASTM, 1916 Race Street, Philadelphia, Pennsylvania 19103-1187.

J. Winnour micri metai.		Alternative bever, pi
1. As-rolled (nonexpanded)	Seam welding and sizing, if applicable, seam heat treat- ment, repair welding.	sizes 2 percent an Special coupling pip Power-tight makeup Bare pipe—special c
2. As-rolled (expanded)	Expansion and seam welding. If applicable, seam heat treat- ment, repair welding.	Special nondestructi for laminations Defect repair proced Markings in metric u
3. Heat treated	Seam welding and full body heat treatment. If applicable, repair welding.	Method of welding j Purchaser inspection Monogram marking

plain-end pipe in and larger ipe ends p coatings tive inspection dures units jointers n g (see Note 2)

Paragraph 7.9.3 Paragraph 7.9.5 Paragraph 7.9.2 Paragraph 11.1

Paragraph 7.8.9 Appendix B Paragraph 10.1.3 Appendix A Appendix H Paragraph I.1 of Appendix I

4.3 The following stipulations are subject to agreement between the purchaser and the manufacturer:

Information	Reference
Skelp end welds	Paragraph 5.5
Chemical composition	Paragraph 6.1.1
Intermediate grades	Paragraphs 1.1, 6.1.1,
	6.2.1, Table C-1
Flattening test orientation	Paragraph 9.3.2
Intermediate diameters	Paragraph 7.2
Intermediate wall thickness	Paragraph 7.3
Supplementary requirements	Appendix F
Supplementary hydrostatic test	Paragraph 9.4.4
Hydrostatic test pressure	Paragraph 9.4.3
Lengths applied to carloads	Table 11
Nonstandard length and length tolerances	Paragraph 7.5
Welded couplings	Paragraph 8.1
Thread protectors	Paragraph 11.2
Repair of welds of electric welded pipe	Paragraph B.3
Marking requirements	Paragraphs 10.1, 10.4, and
	10.6 and Appendix I

Notes:

1. Nothing in this specification should be interpreted as indicating a preference by the committee for any material or process or as indicating equality among the various materials or processes. In the selection of materials and processes, the purchaser must be guided by his experience and by the service for which the pipe is intended.

2. Users of this specification should note that there is no longer a requirement for marking a product with the API monogram. API continues to license use of the monogram on products covered by this specification, but it is administered by the staff of the Institute separately from the specification. The policy describing use of the monogram is contained in Appendix I. No other use of the monogram is permitted. Licensees may mark products in conformance with Appendix I or Section 10, and nonlicensees may mark products in conformance with Section 10.

5 Process of Manufacture and Material

5.1 PROCESS OF MANUFACTURE

Pipe furnished to this specification shall be either seamless or welded as defined in 5.1.1 and 5.1.2 and limited to the grades, types, and minimum diameter limitations specified in Table 1.

5.1.1 Seamless Process

The seamless process is a method of hot working steel to form a tubular product without a welded seam. If necessary, the hot worked tubular product may be subsequently cold finished to produce the desired shape, dimensions, and properties.

5.1.2 Welding Processes

5.1.2.1 Without Filler Metal

5.1.2.1.1 Continuous Welding

Continuous welding is a process of forming a seam by heating the skelp in a furnace and mechanically pressing the formed edges together wherein successive coils of skelp have been joined together to provide a continuous flow of steel for the welding mill. (This process is a type of butt welding.)

5.1.2.1.2 Electric Welding

Electric welding is a process of forming a seam by electric-resistance or electric-induction welding wherein the edges to be welded are mechanically pressed together and the heat for welding is generated by the resistance to flow of the electric current.

5.1.2.2 With Filler Metal

5.1.2.2.1 Submerged-Arc Welding

Submerged-arc welding is a welding process that produces coalescence of metals by heating them with an arc or

(1)	(2)	(3)
		Grade
Type of Pipe	A25	A Through X80
Seamless	x	х
Continuous welded	Х	
Electric welded	Х	Х
Longitudinal seam submerged-arc welded		Х
Gas metal-arc welded		х
Combination gas metal-arc and submerged-arc welded		Х
Double seam submerged-arc welded ^a		Х
Double seam gas metal-arc welded ^a		х
Double seam combination gas metal-arc and submerged-arc welded ^a		Х
Helical seam submerged-arc welded ^b		х

Table 1-Process of Manufacture

^aDouble seam pipe is limited to size 36 and larger. ^bHelical seam pipe is limited to size $4^{1}/_{2}$ and larger.

API SPECIFICATION 5L

4

arcs between a bare metal consumable electrode or electrodes and the work. The arc and molten metal are shielded by a blanket of granular, fusible material on the work. Pressure is not used, and part or all of the filler metal is obtained from the electrode or electrodes.

5.1.2.2.2 Gas Metal-Arc Welding

Gas metal-arc welding is a welding process that produces coalescence of metals by heating them with an arc or arcs between a continuous consumable electrode and the work. Shielding is obtained entirely from an externally supplied gas or gas mixture. Pressure is not used, and the filler metal is obtained from the electrode.

5.1.3 Types of Pipe

5.1.3.1 Seamless Pipe

Seamless pipe is produced by the seamless process defined in 5.1.1.

5.1.3.2 Continuous Welded Pipe

Continuous welded pipe is pipe that has one longitudinal seam produced by the continuous welding process defined in 5.1.2.1.1. (This is a type of butt-welded pipe.)

5.1.3.3 Electric-Welded Pipe

Electric-welded pipe is pipe that has one longitudinal seam produced by the electric-welding process defined in 5.1.2.1.2. For grades higher than X42, the weld seam and the entire heat affected zone shall be heat treated so as to simulate a normalizing heat treatment (see note), except that by agreement between the purchaser and the manufacturer alternative heat treatments or combinations of heat treatment and chemical composition may be substituted. Where such substitutions are made, the manufacturer shall demonstrate the effectiveness of the method selected using a procedure that is mutually agreed upon. This procedure may include, but is not necessarily limited to, hardness testing, microstructural evaluation, or mechanical testing. For Grades X42 and lower, the weld seam shall be similarly heat treated or the pipe shall be processed in such a manner that no untempered martensite remains.

Note: During the manufacture of electric-welded pipe, the product is in motion through the surrounding air. Normalizing is usually defined as "cooling in still air"; hence the phrase "to simulate a normalizing heat treatment" is used here.

5.1.3.4 Longitudinal Seam Submerged-Arc Welded Pipe

Longitudinal seam submerged-arc welded pipe is pipe that has one longitudinal seam produced by the automatic submerged-arc welding process defined in 5.1.2.2.1. At least one pass shall be on the inside, and at least one pass shall be on the outside. (This type of pipe is also known as submerged-arc welded pipe.)

5.1.3.5 Gas Metal-Arc Welded Pipe

Gas metal-arc welded pipe is defined as pipe that has one longitudinal seam produced by the continuous gas metal-arc welding process defined in 5.1.2.2.2. At least one pass shall be on the inside, and at least one pass shall be on the outside.

5.1.3.6 Combination Gas Metal-Arc and Submerged-Arc Welded Pipe

Combination gas metal-arc and submerged-arc welded pipe is pipe with one longitudinal seam produced by a combination of the welding processes defined in 5.1.2.2.1 and 5.1.2.2.2. The gas metal-arc welding process shall be continuous and first, and followed by the automatic submergedarc welding process with at least one pass on the inside and at least one pass on the outside.

5.1.3.7 Double Seam Submerged-Arc Welded Pipe

Double seam submerged-arc welded pipe is pipe with two longitudinal seams produced by the automatic submergedarc welding process defined in 5.1.2.2.1. The seams shall be approximately 180 degrees apart. For each seam, at least one pass shall be on the inside, and at least one pass shall be on the outside. All weld tests shall be performed after forming and welding.

5.1.3.8 Double Seam Gas Metal-Arc Welded Pipe

Double seam gas metal-arc welded pipe is pipe that has two longitudinal seams produced by the gas metal-arc welding process defined in 5.1.2.2.2. The seams shall be approximately 180 degrees apart. For each seam, at least one pass shall be on the inside, and at least one pass shall be on the outside. All weld tests shall be performed after forming and welding.

5.1.3.9 Double Seam Combination Gas Metal-Arc and Submerged-Arc Welded Pipe

Double seam combination gas metal-arc and submergedarc welded pipe is pipe with two longitudinal seams produced by a combination of the welding processes defined in 5.1.2.2.1 and 5.1.2.2.2. The seams shall be approximately 180 degrees apart. For each seam, the gas metal-arc welding shall be continuous and first and followed by the automatic submerged-arc welding process with at least one pass on the inside and at least one pass on the outside. All weld tests shall be performed after forming and welding.

5.1.3.10 Helical Seam Submerged-Arc Welded Pipe

Helical seam submerged-arc welded pipe is pipe that has one helical seam produced by the automatic submerged-arc welding process defined in 5.1.2.2.1. At least one pass shall be on the inside, and at least one pass shall be on the outside. (This type of pipe is also known as spiral weld pipe.)

5.1.4 Types of Seam Welds

5.1.4.1 Electric Weld

An electric weld is a longitudinal seam weld produced by the electric-welding process defined in 5.1.2.1.2.

5.1.4.2 Submerged-Arc Weld

A submerged-arc weld is a longitudinal or helical seam weld produced by the submerged-arc welding process defined in 5.1.2.2.1.

5.1.4.3 Gas Metal-Arc Weld

A gas metal-arc weld is a longitudinal seam weld produced in whole or in part by the continuous gas metal-arc welding process defined in 5.1.2.2.2.

5.1.4.4 Skelp End Weld

A skelp end weld is a seam weld that joins plate or skelp ends together in helical seam pipe.

5.1.4.5 Jointer Weld

A jointer weld is a circumferential seam weld that joins two pieces of pipe together.

5.1.4.6 Tack Weld

A tack weld is a seam weld used to align the abutting edges until the final seam welds are produced. Tack welds shall be made by the following: (a) manual or semi-automatic submerged-arc welding, (b) electric welding, (c) gas metal-arc welding, (d) flux cored arc welding, or (e) shielded metal-arc welding using low-hydrogen electrodes. Tack welds shall be removed by machining or remelting during subsequent welding of the seam.

5.2 COLD EXPANSION

Pipe furnished to this specification, except continuous welded pipe, shall be either nonexpanded or cold expanded at the option of the manufacturer, unless otherwise specified on the purchase order. Suitable provision shall be incorporated to protect the weld from contact with the internal expander during mechanical expansion.

5.3 MATERIAL

The width of plate or skelp used to manufacture helical seam pipe shall be not less than 0.8 or more than 3.0 times the outside diameter of the pipe.

5.4 HEAT TREATMENT

The heat treating process shall be performed in accordance with a documented procedure. Pipe furnished to this specification may be as-rolled, normalized, normalized and tempered, subcritically stress relieved, or subcritically age hardened; and X grades may be quenched and tempered. Grade B pipe that is quenched and tempered shall be seamless, meet the requirements of Supplementary Requirement 4 (SR4 of Appendix F), and be by agreement between the purchaser and the manufacturer. See Section 10 for applicable marking requirements.

5.5 SKELP END WELDS—HELICAL SEAM PIPE

Junctions of skelp end welds and helical seam welds in finished pipe shall be permitted only at distances greater than 12 in. (304.8 mm) from the pipe ends. By agreement between the purchaser and the manufacturer, skelp end welds shall be permitted at the pipe ends, provided there is a circumferential separation of at least 6 in. (152.4 mm) between the skelp end weld and the helical seam weld at the applicable pipe ends. Skelp end welds in finished pipe shall be properly prepared for welding and shall be made by automatic submerged-arc welding, automatic gas metal-arc welding, or a combination of both procedures.

5.6 TRACEABILITY

The manufacturer shall establish and follow procedures for maintaining heat and/or lot identity until all required heat and/or lot tests are performed and conformance with specification requirements is shown.

6 Material Requirements

6.1 CHEMICAL PROPERTIES

6.1.1 Chemical Composition

The composition of pipe furnished to this specification, as determined by heat analysis for pipe other than Grade X80, shall conform to the chemical requirements specified in Table 2, except that by agreement between the purchaser and the manufacturer carbon contents higher than those specified may be used. The composition of intermediate grades (higher than X42) shall conform to chemical requirements agreed upon between the manufacturer and the purchaser, 6

API SPECIFICATION 5L

(1)	(2)	(3)	(4	·)	(5)	(6)
		Carbon	Manganese		Phosphorus		Sulphur
Type of Pipe	Grade & Class	Max. ^a	Min	Max. ^a	Min.	Max.	Max.
<u></u>		Seamless					
Nonexpanded or cold expanded	A25, CI I	0.21	0.30	0.60		0.030	0.030b
Nonexpanded or cold expanded	A25, CI II ^b	0.21	0.30	0.60	0.045	0.080	0.030
Nonexpanded or cold expanded	А	0.22		0.90	_	0.030	0.030
Nonexpanded or cold expanded	Bc	0.27	_	1.15	_	0.030	0.030
Nonexpanded	X42 ^e	0.29	_	1.25	_	0.030	0.030
Nonexpanded	X46 ^d , X52 ^d	0.31	_	1.35	_	0.030	0.030
Cold expanded	X42 ^d , X46 ^d , X52 ^d	0.29 ^e	_	1.25	_	0.030	0.030
Nonexpanded or cold expanded	X56 ^{d,f} , X60 ^{d,f}	0.26	_	1.35	_	0.030	0.030
Nonexpanded or cold expanded	X65, X70, X80	, X70, X80 (By agreemen			ent between the purchaser and the manufacturer)		
		Welded					
Electric-welded or continuous-welded only	A25 Cl I	0.21	0.30	0.60		0.030	0.030
Electric-welded or continuous-welded only	A25 Cl II ^b	0.21	0.30	0.60	0.045	0.080	0.030
Nonexpanded or cold expanded	А	0.21		0.90	_	0.030	0.030
Nonexpanded or cold expanded	$\mathbf{B}^{\mathbf{c}}$	0.26		1.15	_	0.030	0.030
Nonexpanded or cold expanded	X42 ^d	0.28	_	1.25	_	0.030	0.030
Nonexpanded	X46 ^d , X52 ^d	0.30	_	1.35		0.030	0.030
Cold expanded	X46 ^d , X52 ^d	0.28	_	1.25	_	0.030	0.030
Nonexpanded or cold expanded	X56 ^{d,f} , X60 ^{d,f}	0.26	_	1.35	_	0.030	0.030
Nonexpanded or cold expanded	X65 ^{d.g}	0.26	_	1.40	_	0.030	0.030 ^b
Nonexpanded or cold expanded	X70 ^f	0.23 ^h	_	1.60 ^h		0.030	0.030
Nonexpanded or cold expanded	X80 ^f	0.18 ^{h,1}		1.80 ^{h,i}	_	0.030 ⁱ	0.018

Table 2---Chemical Requirements for Heat Analyses by Percentage of Weight

^aFor Grades X42 through X65, for each reduction of 0.01 percent below the specified maximum carbon content, an increase of 0.05 percent above the specified maximum manganese content is permissible, up to a maximum of 1.45 percent for X52 and lower and up to a maximum of 1.60 percent for grades higher than X52. Class II steel is rephosphorized. (See 1.2 for note on bending and thread-

ing properties.)

Columbium, vanadium, titanium, or combinations thereof may be used by agreement between the purchaser and the manufacturer. Columbium, vanadium, titanium, or combinations thereof may be used at

the discretion of the manufacturer.

eFor cold-expanded seamless pipe size 20 or larger, the maximum carbon content shall be 0.28 percent.

and such requirements shall be consistent with the requirements specified in Table 2 for the applicable type of pipe. For Grades X42 and higher, by agreement between the purchaser and the manufacturer, elements other than columbium, vanadium, and titanium may be used; however, caution should be exercised in determining the quantity that may be present for any particular size and thickness of pipe because the addition of such otherwise desirable elements may alter the weldability of the pipe.

6.1.2 Elements Analyzed

As a minimum, each required analysis shall determine the following:

a. Carbon, manganese, phosphorus, sulphur, and silicon.

^fOther chemical compositions may be furnished by agreement between purchaser and manufacturer.

^gFor Grade X65 welded pipe size 16 or larger with a wall thickness of 0.500 in. (12.7 mm) or less, the chemical composition shall be as shown or as agreed upon between the purchaser and the manufacturer; for all other sizes and wall thicknesses of such pipe, the chemical composition shall be as agreed upon between the purchaser and the manufacturer.

^hFor each reduction of 0.01 percent below the specified maximum carbon content, an increase of 0.05 percent above the specified maximum manganese content is permissible, up to a maximum of 2.0 percent.

For Grade X80, limits are for product analysis only, thereby eliminating the need for product analysis tolerances in 9.2.2.

b. Columbium, vanadium, titanium, or combinations thereof, if added during steelmaking.

c. Any other alloying element added during steelmaking for other than deoxidation purpose.

6.1.3 Product Analysis Variation

Product analyses shall conform to the chemical requirements shown in Table 2, within the following permissible variations for product analyses, except for Grade X80 pipe where the requirements in Table 2 are for product analysis:

Element Percent of Variation

a. Carbon:

Seamless pipe—all nonexpanded	
and cold expanded smaller than size 20	+0.03

SPECIFICATION FOR LINE PIPE

Seamless pipe-cold expanded size	
20 and larger in Grades X42 and higher	+0.04
Welded pipe	+0.04
b. Manganese:	
All grades through B	+0.05
Where minimum is specified	-0.05
Grade X42 and higher	+0.10
c. Phosphorus:	+0.01
Where minimum is specified	-0.01
d. Sulfur	+0.01

6.2 MECHANICAL PROPERTIES

6.2.1 Tensile Properties

Grades A25, A, B, X42, X46, X52, X56, X60, X65, X70, and X80 shall conform to the tensile requirements specified in Table 3. Other grades intermediate to the listed grades between X42 and X80 shall conform to tensile requirements agreed upon between the purchaser and the manufacturer, and the requirements shall be consistent with those specified in Table 3. For cold expanded pipe, the ratio of body yield strength and body ultimate strength of each test pipe on which body yield strength and body ultimate strength are determined shall not exceed 0.93. The yield strength shall be the tensile stress required to produce a total elongation of 0.5 percent of the gauge length as determined by an extensometer. When elongation is recorded or reported, the record or report shall show the nominal width of the test specimen when strip specimens are used and the diameter and gauge length when round bar specimens are used, or shall state when full section specimens are used. For Grade A25 pipe, the manufacturer may certify that the material furnished has been tested and meets the mechanical requirements of Grade A25.

6.2.2 Flattening Test Acceptance Criteria

Acceptable criteria for flattening tests shall be as follows: a. Electric welded pipe in grades higher than A25. For all pipe diameter-to-thickness ratios (D/t), flatten to two-thirds of the original outside diameter (OD) without weld opening. For pipe with a D/t greater than 10, continue flattening to one-third of the original OD without cracks or breaks other than in the weld. For all pipe D/t, continue flattening until opposite walls of the pipe meet; no evidence of lamination or burnt metal shall develop during the entire test.

(1)	(2	2)	(3	3) '	(4)	(5)	
	Yield Strength, Minimum		Ultimate Tensile Strength, Minimum		Ultimate Tensile Strength, Maximum		Elongation, Minimum Percent in 2 in.	
Grade	PSI	мРа	PSI	МРа	PSI	MPa	(50.80 mm) ^a	
A25	25,000	(172)	45,000	(310)				
Α	30,000	(207)	48,000	(331)				
В	35,000	(241)	60,000	(413)				
X42	42,000	(289)	60,000	(413)				
X46	46,000	(317)	63,000	(434)				
X52	52,000	(358)	66,000	(455)				
X56	56,000	(386)	71,000	(489)				
X60	60,000	(413)	75,000	(517)				
X65	65,000	(448)	77,000	(530)				
X70	70,000	(482)	82,000	(565)				
X80	80,000	(551)	90,000	(620)	120,000	(827)		

Table 3—Tensile Requirements

^aThe minimum elongation in 2 in. (50.80 mm) shall be that determined by the following equation:

U.S. Customary Equation	Metric Equation
$e = 625,000 \frac{A^{0.2}}{U^{0.9}}$	$e = 1942.57 \frac{A^{0.2}}{L^{0.9}}$

Where: $e = \text{minimum elongation in 2 in. (50.80 mm) in percent to nearest } \frac{1}{2}$ percent.

A = cross-sectional area of the tensile test specimen in sq. in. (mm) based or. specified outside diameter or nominal specimen width and specified wall thickness rounded to the nearest 0.01 sq. in. (6.5 mm²) or 0.75 sq. in. (484 mm²), whichever is smaller.

U = specified minimum ultimate tensile strength, psi, (MPa).

See Appendix D for minimum elongation values for various size tensile specimens and grades. The minimum elongations for both round bar tensile specimens [0.350 in. (8.9 mm) diameter with 1.4 in. (35 mm) gauge length, and 0.500 in. (12.5 mm) diameter with 2.00 in. (50.8 mm) gauge length] shall be that shown in the Area A line of 0.20 sq. in. in Table D-1, Appendix D.

b. Grade A25 welded pipe. Flatten to three-fourths of the original OD without weld fracture. Continue flattening to 60 percent of the original OD without cracks or breaks other than in the weld.

6.2.3 Bend Tests

Welded Grade A25 pipe of nominal size 2 and smaller shall be tested according to 9.3.3.

6.2.4 Manipulation Tests for Submerged-Arc and Gas Metal-Arc Welds

Submerged-arc and gas metal-arc welds shall be tested by the guided-bend test (see 9.3.4).

6.2.5 Weld Ductility Test

For electric welded pipe, the weld ductility shall be determined by tests on full-section specimens of 2 in. (50.8 mm) minimum length. The specimens shall be flattened cold between parallel plates. The weld shall be placed 90 degrees from the direction of applied force (point of maximum bending). No crack or breaks exceeding 1/8 in. (3.18 mm) in any direction in the weld or the parent metal shall occur on the outside surface until the distance between the plate is less than the value of S calculated by the following equations:

a. Grades less than X52:

$$S = \frac{3.07t}{.07 + 3t/D}$$

b. Grades X52 or higher:

$$S = \frac{3.05t}{.05 + 3t/D}$$

Where:

S = distance between flattening plates, in. (mm).

t = specified wall thickness of the pipe, in. (mm).

D = specified outside diameter of the pipe, in. (mm).

Cracks that originate at the edge of the specimen and that are less than 0.025 in. (6.35 mm) long shall not be cause for rejection. One test shall be made on a length of pipe from each lot size as follows:

	Size	Lot Size,
Grade	Designation	No. of Lengths
A25, A and B	$2^{3}/_{8}$ through $5^{9}/_{16}$	400 or less
A25, A and B	$6^{5}/_{8}$ through $12^{3}/_{4}$	200 or less
X42 and higher	$2^{3}/_{8}$ through $12^{3}/_{4}$	200 or less
All grades	14 and over	100 or less

For multiple-length pipe, a length shall be considered as each section cut from a particular multiple length. The weld ductility test may also serve as one of the flattening tests of 9.3.2 by compliance with appropriate amounts of flattening.

6.2.6 Fracture Toughness Tests

When so specified on the purchase order, the manufacturer shall conduct fracture toughness tests in accordance with SR5 or SR6 (Appendix F) or any combination of these, as specified by the purchaser, and shall furnish a report of results showing compliance with the supplementary requirement specified. The testing temperature for SR5 and SR6 shall be selected by the purchaser and shall be shown on the purchase order. Both testing temperature and the Charpy V-notch energy value for SR5B shall be selected by the purchaser and shown on the purchase order. For Grade X80, the manufacturer shall conduct fracture toughness tests in accordance with SR5. The following requirements are mandatory for all diameters:

	at 32°1	n Energy F (0°C) es 1 and 2	2)	at 32°	Shear Area PF (0°C) Note 3)
Avera	ge of Th	ree Spec	imens	Average of T	hree Specimens
All I Aver			n One eat	All Heat Average	From One Heat
Ft-lbs	(J)	Ft-lbs	(J)	Percent	Percent
50	(68)	20	(27)	70	40

Optional SR5B and SR6 mandatory toughness requirements based on Charpy V-notch and drop weight tear tests are as follows:

	at 32°l	harpy Ene F (0°C) es 1 and 2		Shear Area	at 32°F (0°C) Note 3)
Avera	ge of Th	ree Speci	imens	Average of T	hree Specimens
All H Aver		From He		All Heat Average	From One Heat
Ft-lbs	(J)	Ft-lbs	(J)	Percent	Percent
50	(68)	20	(27)	60	40

Notes:

1. Three 10 mm by 10 mm Charpy V-notch specimens shall be used if obtainable from the pipe diameter and wall thickness. Otherwise, appropriate specimen thicknesses shall be used with the required energy levels reduced in proportion to the thickness. For pipe size $6^{3}/_{8}$ and smaller, longitudinal specimens shall be used.

2. If the all-heat average of the order does not meet 50 ft-lbs, the manufacturer shall be responsible for the replacement of heats as may be necessary to bring the average up to 50 ft-lbs.

3. If the all-heat average of the order does not meet the required percentage of shear area, the manufacturer shall be responsible for replacement of such heats as may be necessary to bring the average to the required value.

6.2.7 Metallographic Examination

For grades higher than X42, full-body normalized pipe excluded, compliance with the requirement in 5.1.3.3 to heat treat the entire heat affected zone shall be demonstrated by metallographic examination of a weld cross section. Such examinations shall be performed at least once per working shift or more frequently where grade, diameter, or wall thickness changes are made or where significant excursions from operating heat treatment conditions are encountered.

7 Dimensions, Weights, Lengths, Defects, and End Finishes

7.1 GENERAL—DIMENSIONS AND WEIGHTS

Line pipe shall be furnished in the outside diameters, wall thicknesses, and weights specified in Tables 4, 5, 6A, 6B, 6C, and 7, as specified on the purchase order. (See Tables E-1, E-2, and E-3 of Appendix E for the metric equivalents of U.S. customary values given in Tables 6A, 6B, and 6C.)

7.2 DIAMETER

The outside diameter shall be within the tolerances specified in Tables 7 and 8. Pipe with outside diameters intermediate to those listed in Tables 6A, 6B, and 6C is available in sizes 20 and larger by agreement between the purchaser and the manufacturer. For threaded pipe, the outside diameter at the threaded ends shall be such that the thread length, L, and the number of full-crest threads in that length are within the applicable dimensions and tolerances specified in in API Standard 5B.

Pipe sizes 20 and smaller shall permit the passage over the ends, for a distance of 4 in. (101.6 mm), of a ring gauge that has a bore diameter not larger than the pipe's specified outside diameter plus the applicable plus tolerance shown in Table 8. For submerged-arc welded pipe, ring gauges may be slotted or notched to permit passage of the gauge over the weld reinforcement. Ring gauge measurements shall be made at least three times on each working shift (12 hours maximum).

Diameter measurements of pipe larger than size 20 shall be made with a diameter tape. Diameter measurements of pipe sizes 20 and smaller shall be made with a snap gauge, caliper, or other device that measures actual diameter across a single plane, except that the manufacturer shall have the option of using a diameter tape. Diameter measurements shall be made at least three times on each operating shift (12 hours maximum).

Any pipe found to be out of tolerance is cause for individual diameter measurement of all pipe back to the last, and up to the next, two sequential pipes measured and found to be within tolerance.

By agreement between the purchaser and the manufacturer, the tolerances on the outside diameter at the pipe ends may be applied instead to the inside diameter at the pipe ends.

7.3 WALL THICKNESS

Each length of pipe shall be measured for conformance to the specified wall thickness requirements. The wall thickness at any location shall be within the tolerances specified in Table 9, except that the weld area shall not be limited by the plus tolerance. Pipe with wall thicknesses intermediate to those listed in Tables 6A, 6B, and 6C may be furnished by agreement between the purchaser and the manufacturer. Wall thickness measurements shall be made with a mechanical caliper or with a properly calibrated nondestructive inspection device of appropriate accuracy. In case of dispute, the measurement determined by use of the mechanical caliper shall govern. The mechanical caliper shall be fitted with contact pins having circular cross sections of 1/4 in. (6.35 mm) diameter. The end of the pin contacting the inside surface of the pipe shall be rounded to a maximum radius of 11/2 in. (38.10 mm) for pipe size 6 or larger, and to a maximum radius of 1/8 in. (3.2 mm). The end of the pin contacting the outside surface of the pipe shall be either flat or rounded to a radius of not less than 11/2 in. (38.10 mm).

7.4 WEIGHT

Each length of pipe size 5 or larger shall be weighed separately and the carload weights determined. Lengths of pipe size 4 or smaller shall be weighed either individually or in convenient lots at the option of the manufacturer and the carload weights determined. A carload is considered to be a minimum of 40,000 pounds (18,144 kilograms). Threadedand-coupled pipe shall be weighed with the couplings screwed on but without thread protectors, except for carload weighings for which proper allowance shall be made for the weight of the thread protectors. Threaded-and-coupled pipe may be weighed before the couplings are attached provided that allowance is made for the weight of the couplings.

The weights determined as described above shall conform to the specified weights or calculated weights for plain-end pipe or to the specified calculated weights (or adjusted calculated weights) for threaded-and-coupled pipe, within the tolerances specified in Table 10.

Full length calculated weights shall be determined in accordance with the following equation:

 $W_L = (w_{pe} \times L) + e_w$

Where:

- W_L = calculated weight of a piece of pipe of length L, lb (kg).
- v_{pe} = plain-end weight per unit length rounded to the nearest 0.01 lb/ft (0.01 kg/m).
- L = length of pipe, including end finish, as defined in 7.5, ft (m).
- e_w = weight gain or loss due to end finish, lb (kg). For plain-end pipe, e_w equals 0.

The plain-end weight per unit length, w_{pe} , shall be calculated using the following equation and rounded to the nearest 0.01 lb/ft (0.01 kg/m):

U.S. customary unit equation (lb/ft) = $w_{pe} = 10.68 (D-t)t$

SI unit equation $(kg/m) = w_{pe} = 0.02466(D-t)t$

Where:

10

D = specified outside diameter, in. (mm).

t = specified wall thickness, in. (mm).

7.5 LENGTH

Unless otherwise agreed between the purchaser and the manufacturer, pipe shall be furnished in the nominal lengths and within the length tolerances shown in Table 11, as specified on the purchase order. For threaded-and-coupled pipe, the length shall be measured to the outer face of the coupling. The length of threaded-and-coupled pipe may be determined before the couplings are attached provided proper allowance is made for the length of the couplings. Each length of pipe shall be measured, except that pipe made in lengths that are uniform within 0.1 ft (0.03 m) need not be individually measured, provided the accuracy of the length is verified at least three times per operating shift (12 hours maximum). Any pipe found to be out of tolerance is cause for individual measurement of all pipe back to the last, and up to the next, two sequential pipes measured and found to be within tolerance.

The accuracy of length measuring devices for lengths of pipe less than 100 ft (30 m) shall be ± 0.1 ft (0.03 m).

7.6 STRAIGHTNESS

Pipe smaller than $4^{1}/_{2}$ in. OD in Grades A25, A, or B shall be reasonably straight. All other pipe shall be randomly checked for straightness; deviation from a straight line shall not exceed 0.2 percent of the length. Measurement may be made using a taut string or wire from end to end along the side of the pipe, measuring the greatest deviation.

7.7 JOINTERS

When specified on the purchase order, jointers (two lengths of pipe coupled together by the manufacturer or two lengths of pipe welded together by the manufacturer in accordance with the requirements of Appendix A) may be furnished; however, no length used in making a jointer shall be less than 5.0 ft (1.52 m).

For helical seam submerged-arc welded pipe, the junctions of skelp end welds and helical seam welds shall be permitted only at distances greater than 12 in. (304.8 mm) from jointer welds. By agreement between the purchaser and the manufacturer, skelp end welds in finished pipe shall be permitted at jointer welds, provided there is a circumferential separation of at least 6 in. (152.4 mm) between the junction of the skelp end weld and the jointer weld and the junction of the helical seam and the jointer weld.

Double joints are not within the purview of API Specification 5L. Double joints are defined as lengths of pipe welded together by parties other than the manufacturer or lengths welded together by the manufacturer in accordance with requirements other than those in Appendix A.

7.8 WORKMANSHIP AND DEFECTS

Imperfections of the types described in 7.8.1–7.8.12 that exceed the specified criteria shall be considered defects. The manufacturer shall take all reasonable precautions to minimize recurring imperfections, damage, and defects.

7.8.1 Dents

The pipe shall contain no dents greater than 1/4 in. (6.35 mm), measured as the gap between the lowest point of the dent and a prolongation of the original contour of the pipe. The length of the dent in any direction shall not exceed one-half the diameter of the pipe. All cold-formed dents deeper than 1/8 in. (3.18 mm) with a sharp bottom gouge shall be considered a defect. The gouge may be removed by grinding.

7.8.2 Offset of Plate Edges

For pipe with filler metal welds having wall thicknesses of 0.500 in. (12.7 mm) and less, the radial offset (misalignment) of plate edges in the weld seams shall not be greater than ${}^{1}/{}_{16}$ in. (1.59 mm). For pipe with filler metal welds having wall thicknesses over 0.500 in. (12.7 mm), the radial offset shall not be greater than 0.125t or ${}^{1}/{}_{8}$ in. (3.18 mm), whichever is smaller. For electric-welded pipe, the radial offset of plate edges plus flash trim shall be no greater than 0.060 in. (1.52 mm).

7.8.3 Out-of-Line Weld Bead for Pipe With Filler Metal Welds

Out-of-line weld bead (off-seam weld) shall not be cause for rejection, provided complete penetration and complete fusion have been achieved as indicated by nondestructive examination.

7.8.4 Height of Outside and Inside Weld Beads----Submerged-Arc Welds

The weld bead shall not extend above the prolongation of the original surface of the pipe by more than the following:

Wall Thickness	Maximum Height of Weld Bead
$1/_2$ in. (12.70 mm) and under	¹ / ₈ in. (3.18 mm)
Over $\frac{1}{2}$ in. (12.70 mm)	$^{3}/_{16}$ in. (4.76 mm)

Weld beads higher than permitted by the requirements of this paragraph may be ground to acceptable limits at the option of the manufacturer.

The height of the weld bead shall in no case come below a prolongation of the surface of the pipe (outside or inside the weld bead) except that contouring by grinding, otherwise covered in this specification, shall be permitted.

7.8.5 Height of Flash of Electric-Welded Pipe

The outside flash of electric-welded pipe shall be trimmed to an essentially flush condition.

The inside flash of electric-welded pipe shall not extend above the prolongation of the original inside surface of the pipe more than 0.060 in. (1.52 mm).

7.8.6 Trim of Inside Flash of Electric-Welded Pipe

The depth of groove resulting from removal of the internal flash of electric-welded pipe shall not be greater than that listed below for the various wall thicknesses. Depth of groove is defined as the difference between the wall thickness measured approximately 1 in. (25.4 mm) from the weld line and the remaining wall under the groove.

Specified Wall Thickness (t)	Maximum Depth of Trim
0.150 in. (3.8 mm) and less	0.10r
0.151 in. (3.8 mm) to 0.301 in. (7.6 mm)	0.015 in. (0.38 mm)
0.301 in. (7.6 mm) and greater	0.05t

7.8.7 Hard Spots

Any hard spot having a minimum dimension greater than 2 in. (50.8 mm) in any direction and a hardness greater than or equal to 35 HRC (327 Brinell) shall be rejected. The section of pipe containing the hard spot shall be removed as a cylinder.

The surface of cold-formed welded pipe shall be examined visually to detect irregularities in the curvature of the pipe. When this examination fails to disclose mechanical damage as the cause of the irregular surface but indicates that the irregular surface may be attributed to a hard spot, the hardness and dimensions of the area shall be determined. If hardness and dimensions exceed the aforementioned rejection criteria, the hard spot shall be removed.

7.8.8 Cracks and Leaks

All cracks, sweats, and leaks shall be considered defects.

7.8.9 Laminations (See Note)

Any lamination or inclusion extending into the face or bevel of the pipe and having a visually determined transverse dimension exceeding 1/4 in. (6.35 mm) is considered a defect. Pipe containing such defects shall be cut back until no lamination or inclusion is greater than 1/4 in. (6.35 mm).

Any lamination in the body of the pipe exceeding both of the following is considered a defect:

a. Greater than or equal to ${}^{3}/_{4}$ in. (19.0 mm) in the minor dimension.

b. Greater than or equal to 12 square inches (7,742 mm²) in area.

Disposition of such defects shall be in accordance with 9.7.5.4, Item a or b. No specific inspection by the manufacturer is required unless the purchaser specifies special nondestructive inspection on the purchase order.

Note: A lamination is an internal metal separation creating layers generally parallel to the surface.

7.8.10 Arc Burns

Arc burns are localized points of surface melting caused by arcing between electrode or ground and pipe surface and shall be considered defects (see note).

Disposition of pipe containing arc burns shall be in accordance with 9.7.5.4, except that removal of defects by grinding shall be subject to the following additional conditions:

a. Arc burns may be removed by grinding, chipping, or machining. The resulting cavity shall be thoroughly cleaned and checked for complete removal of damaged material by etching with a 10 percent solution of ammonium persulfate or a 5 percent solution of nital.

b. If removal of damaged material is complete, the cavity may be merged smoothly into the original contour of the pipe by grinding, provided the remaining wall thickness is within specified limits.

Note: Contact marks, defined as intermittent marks adjacent to the weld line, resulting from the electrical contact between the electrodes supplying the welding current and the pipe surface, are not defects.

7.8.11 Undercuts

Undercutting of submerged-arc or gas metal-arc welded pipe is the reduction in thickness of the pipe wall adjacent to the weld where it is fused to the surface of the pipe. Undercutting can best be located and measured visually.

Minor undercutting on either the inside or the outside of the pipe is defined as follows and is acceptable without repair or grinding:

a. Maximum depth of $\frac{1}{32}$ in. (0.79 mm) and not exceeding $2^{1}/_{2}$ percent of the wall thickness with a maximum length of one-half the wall thickness and not more than two such undercuts in any 1 ft (0.30 m) of the weld length.

b. Maximum depth of $\frac{1}{64}$ in. (0.40 mm) any length.

Undercutting in excess of Item a above shall be considered a defect. Disposition shall be as follows:

a. Undercut defects not exceeding $1/32}$ in. (0.79 mm) in depth and not exceeding $12^{1}/_{2}$ percent of the specified wall thickness shall be removed by grinding in accordance with 9.7.5.4, Item a.

b. Disposition of undercuts greater in depth than $1/_{32}$ in. (0.79 mm) or $12^{1}/_{2}$ percent of the specified wall thickness shall be in accordance with 9.7.5.4, Item b, c, or d.

12

API SPECIFICATION 5L

7.8.12 Other Defects

Any imperfection having a depth greater than $12^{1}/_{2}$ percent of the specified wall thickness, measured from the surface of the pipe, shall be considered a defect.

7.9 PIPE ENDS

7.9.1 General

Pipe shall be furnished threaded or plain end as set forth in Tables 4, 5, 6A, 6B, and 6C or with bell and spigot ends in accordance with 7.10.4. Extra-strong line pipe shall be furnished with plain ends, except that the ends shall be threaded and coupled if so specified on the purchase order. Spiral weld may not be threaded. The inside and outside edges of the ends of all pipe shall be free of burrs.

7.9.2 Threaded Ends

Threaded ends shall conform to the threading, thread inspection, and gauging requirements specified in API Standard 5B. One end of each length of threaded pipe shall be provided with a coupling conforming to the requirements of Section 8, in effect at the date of manufacture of each coupling (see Note 1), and the other end with thread protection conforming to the requirements of 11.2. Couplings shall be screwed onto the pipe handling-tight (see Note 2), except that they shall be applied power-tight if so specified on the purchase order. A thread compound shall be applied to cover the full surface of either the coupling or pipe engaged thread before making up the joint. All exposed threads shall be coated with the thread compound. Unless otherwise specified on the purchase order, the manufacturer may use any thread compound that meets the performance objectives set forth in API Bulletin 5A2. A storage compound of distinct color may be substituted for this thread compound on all exposed threads. Whichever compound is used shall be applied to a surface that is clean and reasonably free of moisture and cutting fluids.

Notes:

1. Unless otherwise specified on the purchase order, it is not mandatory that both the pipe and coupling of each threaded-and-coupled product be manufactured to the same edition of this specification.

2. Handling-tight shall be defined as sufficiently tight that the coupling cannot be removed except by using a wrench. The purpose of making up couplings handling-tight is to facilitate removal of the couplings for cleaning and inspecting threads and applying fresh thread compound before laying the pipe. This procedure has been found necessary to prevent thread leakage, especially in gas lines, because manufacturer-applied couplings made up power-tight, although leak-proof at the time of makeup, may not always remain so after transportation, handling, and laying.

7.9.3 Plain Ends

Unless otherwise orde red, plain-end pipe (other than double-extra-strong pipe) in sizes $2^{3}/_{8}$ and larger shall be furnished with ends beveled to an angle of 30 degrees (+5 degrees, -0 degrees) measured from a line drawn perpendicular

to the axis of the pipe, and with a root face of $\frac{1}{16}$ in., $\frac{\pm 1}{32}$ in. (1.59 mm, ± 0.79 mm) (see note). Double-extra strong plain-end pipe sizes $2^{3}/_{8}$ and larger shall be furnished with square-cut ends, unless beveled ends (as above) are specified on the purchase order. For seamless pipe where internal machining is required to maintain the root face tolerance, the angle of the internal taper, measured from the longitudinal axis, shall be no larger than the following:

Specified Wall Thickness (in.)	Maximum Angle of Taper (degrees)
Less than 0.418 (10.6 mm)	7
0.418 thru 0.555 (10.6 thru 14.1 mm)	9 ¹ / ₂
0.556 thru 0.666 (14.1 thru 16.9 mm)	11
Over 0.666 (16.9)	14

For the removal of an internal burr on welded pipe larger than size $4^{1}/_{2}$, the internal taper, measured from the longitudinal axis, shall be no larger than 7 degrees.

The end finish of pipe sizes smaller than $2^{3}/_{8}$ shall be specified on the purchase order. For pipe sizes $2^{3}/_{8}$ and larger, the pipe ends shall be cut square within $1/_{16}$ in. (1.59 mm). Pipe ends from each end-finishing machine shall be checked for compliance at least three times per 8-hour working shift.

Both ends of pipe with filler metal welds shall have the inside reinforcement removed for a distance of approximately 4 in. (101.6 mm) from the end of the pipe.

Note: The purchaser is directed to the applicable code for the recommended angle of pipe bevel.

7.9.4 Belled Ends

When so specified on the purchase order, pipe with wall thicknesses 0.141 in. (3.58 mm) and less shall be furnished with one end belled for bell and spigot joints in accordance with Figure 1. The belled end shall be visually inspected for workmanship and injurious defects.

7.9.5 Plain Ends for Special Couplings

When so specified on the purchase order, pipe shall be furnished with ends suitable for use with special couplings such as Dresser, Victaulic, or other equivalent special couplings. Such pipe shall be sufficiently free from indentations, projections, or roll marks for a distance of 8 in. (203 mm) from the end of the pipe to permit proper makeup of coupling.

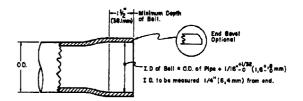


Figure 1—Belled End for Bell and Spigot Joint

SPECIFICATION FOR LINE PIPE

13

(1)	(2)		(3)	. (4	4)	(5	5)	(6)	(7)	(8)	(9)	(1	0)
								С	alculated	Weight				Test Pr	essure		
Nominal	Nominal Weight Designation	Dia	itside meter, D	Thick	all kness, t	Diar	side neter, d	Pla En w,	d,	Coup	ds and ling, ^b	Gra A2	.5		ade A		ade B
Size Designation	Threads and Coupling ^a	in.	mm	in.	mm	in.	mm	lb/ft	kg/m	lb	kg	psi	100 kPa	psi	100 kPa	psi	100 kPa
1/8	0.25	0.405	(10.3)	0.068	(1.7)	0.269	(6.9)	0.24	(0.36)	0.20	(0.09)	700	(48)	700	(48)	700	(48
1/4	0.43	0.540	(13.7)	0.088	(2.2)	0.364	(9.3)	0.42	(0.62)	0.20	(0.09)	700	(48)	700	(48)	700	(48
³ / ₈	0.57	0.675	(17.1)	0.091	(2.3)	0.493	(12.5)	0.57	(0.84)	0.00	(0.00)	700	(48)	700	(48)	700	(48
1/2	0.86	0.840	(21.3)	0.109	(2.8)	0.622	(15.7)	0.85	(1.28)	0.20	(0.09)	700	(48)	700	(48)	700	(48
³ / ₄	1.14	1.050	(26.7)	0.113	(2.9)	0.824	(20.9)	1.13	(1.70)	0.20	(0.09)	700	(48)	700	(48)	700	(48
1	1.70	1.315	(33.4)	0.133	(3.4)	1.049	(26.6)	1.68	(2.52)	0.20	(0.09)	700	(48)	700	(48)	700	(48
$1^{1}/_{4}$	2.30	1.660	(42.2)	0.140	(3.6)	1.380	(35.0)	2.27	(3.43)	0.60	(0.27)	1000	(69)	1000	(69)	1100	(76
$1^{1}/_{2}$	2.75	1.900	(48.3)	0.145	(3.7)	1.610	(40.9)	2.72	(4.07)	0.40	(0.18)	1000	(69)	1000	(69)	1100	(76
2	3.75	2.375	(60.3)	0.154	(3.9)	2.067	(52.5)	3.65	(5.42)	1.20	(0.54)	1000	(69)	1000	(69)	1100	(76
2 ¹ / ₂	5.90	2.875	(73.0)	0.203	(5.2)	2.469	(62.6)	5.79	(8.69)	1.80	(0.82)	1000	(69)	1000	(69)	1100	(76
3	7.70	3.500	(88.9)	0.216	(5.5)	3.068	(77.9)	7.58	(11.31)	1.80	(0.82)	1000	(69)	1000	(69)	1100	(76
3 ¹ / ₂	9.25	4.000	(101.6)	0.226	(5.7)	3.548	(90.2)	9.11	(13.48)	3.20	(1.45)	1200	(83)	1200	(83)	1300	(90
4	11.00	4.500	(114.3)	0.237	(6.0)	4.026	(102.3)	10.79	(16.02)	4.40	(2.00)	1200	(83)	1200	(83)	1300	(90
5	15.00	5.563	(141.3)	0.258	(6.6)	5.047	(128.1)	14.62	(21.92)	5.60	(2.54)	1200	(83)	1200	(83)	1300	(90
6	19.45	6.625	(168.3)	0.280 (7.1) 6.065 (154.1) 18.97 (28.22) 7.20		(3.27)	_		1200	(83)	1300	(90					
8	25.55	8.625	(219.1)	0.277	(7.0)	8.071	(205.1)	24.70	(36.61)	14.80	(6.72)	_		1160	(80)	1350	(9)
8	29.35	8.625	(219.1)			1340	(92)	1570									
10	32.75	10.750	(273.0)	0.279	(7.1)	10.192	(258.9)	31.20	(46.57)	20.00	(9.08)	—		930	(64)	1090	(7:
10	35.75	10.750	(273.0)	0.307	(7.8)	10.136	(257.5)	34.24	(51.03)	19.20	(8.72)	_		1030	(71)	1200	(8.
10	41.85	10.750	(273.0)			(84)	1430	(9									
12	45.45	12.750	(323.8)	0.330	(8.4)	12.090	(307.1)	43.77	(65.35)	32.60	(14.80)		_	960	(64)	1090	(7
12	51.15	12.750	(323.8)				(304.9)		(73.65)	30.80	(13.98)		—	1060	(73)	1240	(8
14D	57.00	14.000	(355.6)	0.375			(336.6)					—		960	(66)	1120	(7
16D	65.30	16.000	(406.4)	0.375					(92.98)			—	_	840	(58)	980	(6
18D	73.00	18.000	(457.0)	0.375			• •		(104.84)			—	_	750	(52)	880	(6
20D	81.00	20.000	(508.0)	0.375	(9.5)	19.250	(489.0)	78.60	(116.78)	42.00	(19.07)		—	680	(47)	790	(5

Table 4-Standard-Weight Threaded Line Pipe Dimensions, Weights, and Test Pressures

Note: See Figure 2. ^aNominal weight, threads and coupling (column 2) are shown for the purpose of identification in ordering. ^bWeight gain due to end finishing. See 7.4.

Copyright by the American Petroleum Institute Wed Apr 12 11:23:15 2000

ŕ.

14

API SPECIFICATION 5L

(1)	(2)	(,	3)	(4)	(5)		(6)		(7)
								Test P	ressure		
Nominal	Nominal Weight Designation	Dia	tside meter, D		all kness, t		ade 25		rade A	G	frade B
Size Designation	Threads and Coupling ^a	in.	mm	in.	mm	psi	100 kPa	psi	100 kPa	psi	100 kPa
۱ _{/8}	0.31	0.405	(10.3)	0.095	(2.4)	850	(59)	850	(59)	850	(59
'/ ₄	0.54	0.540	(13.7)	0.119	(3.0)	850	(59)	850	(59)	850	(59
³ / ₈	0.74	0.675	(17.1)	0.126	(3.2)	850	(59)	850	(59)	850	(59
1/2	1.09	0.840	(21.3)	0.147	(3.7)	850	(59)	850	(59)	850	(59
3/4	1.48	1.050	(26.7)	0.154	(3.9)	850	(59)	850	(59)	850	(59
1	2.18	1.315	(33.4)	0.179	(4.5)	850	(59)	850	(59)	850	(59
11/4	3.02	1.660	(42.2)	0.191	(4.9)	1300	(90)	1500	(103)	1600	(110
$1 \frac{1}{2}$	3.66	1.900	(48.3)	0.200	(5.1)	1300	(90)	1500	(103)	1600	(110
2	5.07	2.375	(60.3)	0.218	(5.5)	1300	(90)	2500	(172)	2500	(172
2 ¹ / ₂	7.73	2.875	(73.0)	0.276	(7.0)	1300	(90)	2500	(172)	2500	(172
3	10.33	3.500	(88.9)	0.300	(7.6)	1300	(90)	2500	(172)	2500	(172
$3^{1}/_{2}$	12.63	4.000	(101.6)	0.318	(8.1)	1700	(117)	2800	(193)	2800	(193
4	15.17	4.500	(114.3)	0.337	(8.6)	1700	(117)	2700	(186)	2800	(193
5	21.09	5.563	(141.3)	0.375	(9.5)	1700	(117)	2400	(165)	2800	(193
6	28.89	6.625	(168.3)	0.432	(11.0)	_	_	2300	(159)	2700	(186
8	43.90	8.625	(219.1)	0.500	(12.7)	—		2100	(145)	2400	(165
10	55.82	10.750	(273.0)	0.500	(12.7)			1700	(117)	2000	(138
12	66.71	12.750	(323.8)	0.500	(12.7)	_		1400	(97)	1600	(110

Table 5-Extra-Strong Threaded Line Pipe Dimensions, Weights, and Test Pressures

^aNominal weights, threads, and coupling (column 2) are shown for the purpose of identification in ordering.

Copyright by the American Petroleum Institute Wed Apr 12 11:23:16 2000

	〔		(2)	(6)	(4)	(C)	(n)	(5)	(8)	(6)	(<u>)</u>
								Minimun	Minimum Test Pressure (psi) ^b	(psi) ^b	
	Designation		Outside	Wall	Plain-End Weight,	Inside	Grade	Grac	Grade A	Gra	Grade B
Nominal Size	Wall	Weight	Diameter, D (in.) ^a	Thickness, t (in.) ^a	w _{pe} (Ib/ft)	Diameter, d (in.)	A25 Alt.	Std.	Alt.	Std.	Alt.
1/8	Std.	0.24	0.405	0.068	0.24	0.269	700	700	I	700	
8/1	XS	0.31	0.405	0.695	0.31	0.215	850	850	I	850	I
11	Srd	0.47	0.540	0.088	0.42	0.364	700	200	ł	700	
1/4	XS	0.54	0.540	0.119	0.54	0.302	850	850	ł	850	
3/ <u>8</u>	Std	0.57	0.675	160.0	0.57	0.493	700	700	I	700	1
3/8	XS	0.74	0.675	0.126	0.74	0.423	850	850	1	850	1
1/2	Std.	0.85	0.840	0.109	0.85	0.622	700	700	I	700	I
1/2	XS	1.09	0.840	0.147	1.09	0.546	850	850	l	850	Ι
1/2	SXX	1.71	0.840	0.294	1.71	0.252	0001	1000	Ι	0001	ł
3/4	Std	1.13	1.050	0.113	1.13	0.824	700	700	I	700	I
3/4	XS	1.47	1.050	0.154	1.47	0.742	850	850	1	850	1
3/4	XXX	2.44	1.050	0.308	2.44	0.434	1000	1000	ł	1000	I
-	Std	1.68	1.315	0.133	1.68	1.049	200	700	I	700	I
	XS	2.17	1.315	0.179	2.17	0.957	850	850	1	850	}
	SXX	3.66	1.315	0.358	3.66	0.599	1000	1000	ł	1000	I
1/4	Std	7.27	1.660	0.140	2.27	1.380	1000	1200	I	1300	I
7/1	XS	00	1.660	0.191	3.00	1.278	1300	1800	I	1900	1
11/4	XXS	5.21	1.660	0.382	5.21	0.896	1400	2200	I	2300	ł
11/2	Std	27.6	1,900	0.145	2.72	1.610	1000	1200	1	1300	1
	XS	3.63	0061	0.200	3.63	1.500	1300	1800	1	1900	I
11/2	XXS	6.41	006.1	0.400	6.41	1.100	1400	2200	I	2300	ł

API SPEC*5L 95 🗰 0732290 0541159 797 🖿

SPECIFICATION FOR LINE PIPE

Designation inal weight 2c Wall Weight 98 2.03 9 98 3.00 9 98 3.00 9 98 3.00 9 98 3.00 9 98 3.00 9 98 3.00 9 98 3.00 9 98 3.00 9 98 5 3.00 98 5 3.00 98 5 3.00	ЧЧ		Ê	(1)				(6)	(01)	(11)	(71)		, ,		
		Wall	Flain- End	Inside				Minii	Minimum Test Pressure (psi) ^b	Pressure (þsi) ^b				
S.G.	(III.)		weight, w _{pe} (lb/ft)	ulancter, d (in.)	Grade A25	de Grade 5 A	Grade B	Grade X42	Grade X46	Grade X52	Grade X56	Grade X60	Grade X65	Grade X70	Grade X80
Sid.	2.375	0.083	2.03	2.209	Std. 600		1470	1760	1930	2180	2350	2520	2730	2940	300
Std.	2.375	0.109^{-}	2.64	2.157	Alt. – Std. 800		1930	2310	2410	2730	3000	3000	3000	3000	ð Ö Ö
Std.	2.375	0.125	3.00	2.125	Alt Std000		2410 2210	2890 2650	2910 2910	000 3000	0000	888	000 3000 3000	3000	
Std.	2.375	0.141	3.36	2.093	Alt		2490	2990 2990	3000	3000	3000	800	3000	3000	
	2.375	0.154	3.65	2.067	Alt		2500	3000	3000	3000	3000	3000	3000	3000	ð ög
	2.375	0.172	4.05	2.031	Alt Std. 1100		2500 2500	3000	3000	3000	3000	900 900 900	3000	3000	
2 ³ / ₈ 4.39	2.375	0.188	4.39	666'1	Alt. 1200 Std. 1200		2500 2500	3000 3000	3000 3000	3000 3000	3000 3000	3000 3000	3000 3000	3000 3000	200
2 ³ /8 XS 5.02	2.375	0.218	5.02	1.939	Alt		2500 2500	3000 3000	3000 3000	3000 3000	3000 3000	300 3000	3000 3000	3000 3000	900 900
2 ³ /8 5.67	2.375	0.250	5.67	1.875	Alt. — Std. 1400		2500 2500	3000	3000	3000	3000	3000	3000	000 3000	
2 ³ /8 6.28	2.375	0.281	6.28	1.813	Alt		2200 7200	3000	0000	3000	0000	800	0000		
2 ³ /8 XXS 9.03	2.375	0.436	9.03	1.503	Alt. Std. 1400 Alt. –	- 500 2500 2500	2500 2500	3000 3000	3000 3000 3	3000	900 3000 3000	3000 3000 3	900 3000 3000	0000 3000 3000	
2 ⁷ /8 ^c 2.47	2.875	0.083	2.47	2.709	Std. 600		1210	1460	1590	1800	1940	2030	2250	2430	277(
2 ⁷ /8 ^c 3.22	2.875	0.109	3.22	2.657	Alt. 800 Std. 800	- 1360	1520	0161	20 0 0	2370	2430 2550	2600	2310 2960	0000	3000
2 ⁷ /8 ^c 3.67	2.875	0.125	3.67	2.625	Alt. Std. 1000		0661	2190	2400	2710	2920	3000	0000		
2 ⁷ /8c 4.12	2.875	0.141	4.12	2.593	Alt		2060	2470	2710	3000	3000	3000	0000	3000	a e e
2 ⁷ /8 4.53	2.875	0.156	4.53	2.563	Std. 1000		2280 2280	2730 2730	3000	3000	3000	3000			ž ž ž
27/8 4.97	2.875	0.172	4.97	2.531	Alt		2200 2200	3000	3000	3000	3000	3000	3000	3000	
27/8 5.40	_2.875	0.188	5.40	2.499	Alt		2200 5200	3000	3000	3000	3000	3000	3000	3000	ð ð ð
2 ⁷ /8 Std. 5.79	2.875	0.203	5.79	2.469	Std. 1000		200	3000	0000	3000	3000	3000		3000	
27/8 6.13	2.875	0.216	6.13	2.443	Alt		2200 2200	3000	3000	3000	3000	3000	3000	3000	
2 ⁷ /8 7.01	2.875	0.250	7.01	2.375	All		500 5200	3000	0000	3000	0000				
2 ⁷ /8 XS 7.66	2.875	0.276	7.66	2.323	Alt	0 2500	2200 2200	3000	3000	3000	3000	3000	3000 3000	3000	ð ög

- --

API SPECIFICATION 5L

Copyright by the American Petroleum Institute Wed Apr 12 11:23:19 2000

Ξ		(2)	(3)	(4)	(2)		(9)	6	(8)	6)	(01)	(II)	(12)	(13)	(14)	(15)	(16)
Designation	g	Outside	Wall Thickness	Plain- End Weicht	Inside Diameter					Mini	mum Test	Minimum Test Pressure (psi) ^b	^d (isq)				
Wall	Weight	D (in.) ^a	t t (in.) ^a	w _{pe} (1b/ft)	d (in.)		Grade A25	Grade A	Grade B	Grade X42	Grade X46	Grade X52	Grade X56	Grade X60	Grade X65	Grade X70	Grade X80
XXS	13.69	2.875	0.552	13.69	1.771	- Std. Alt.	1400	2500 2500	2500 2500	3000 3000	3000 3000	3000 3000	3000 3000	3000 3000	3000 3000	3000 3000	3000 3000
	3.03	3.500	0.083	3.03	3.334	Std.	009	850	1000	1200	1310 1640	1480 1850	1590 1990	1710 2130	1850 2310	1990 2490	2280 2850
	3.95	3.500	0.109	3.95	3.282	Std.	800	1120	1310	1570	1720	1940	2620	2240 2800	2430 3000	2620 3000	2990 3000
	4.51	3.500	0.125	4.51	3.250	Std.	0001	1290	1500	1800	0217	2230	2400 3000	2570 3000	2790 3000	000	3000
	5.06	3.500	0.141	5.06	3.218	Std.	0001	1450	1690	2030	2220	2510	2710	2900 3000	3000	3000	3000
	5.57	3.500	0.156	5.57	3.188	Std.	1000	1600	1870	2250	2460	2780	3000	000	3000	3000	3000
	6.11	3.500	0.172	6.11	3.156	Std.	1000	1770	2060	2480	2710 2710	3000	3000			3000	3000
	6.65	3.500	0.188	6.65	3.124	Std.	1000	1930	500	2710	2970 2970	3000	2000 2000	300	3000	000 000	3000
Std.	7.58	3.500	0.216	7.58	3.068	Std.	1000	2220	2500	000 000 000		3000	3000	300	3000	3000	3000
	8.68	3.500	0.250	8.68	3.000	Alt. Std.		2500	2500		3000	3000		0000	3000		3000
	99.66	3.500	0.281	99.66	2.938	Std.		2200 2200	2200		0000	3000		3000	3000	3000	3000
xs	10.25	3.500	0.300	10.25	2.900	Std.	1300	2500	2500	0000	3000	3000	000	3000	3000	3000	3000
XXS	18.58	3.500	0.600	18.58	2.300	Std. Alt.		2500 2500	2500 2500	3000	3000	3000	3000	3000	3000	3000	3000 3000
	3.47	4.000	0.083	3.47	3.834	Std.	l	750	870 1090	1310	1150	1620	1390 1740	1490 1870	1620 2020	1740 2180	1990 2490
	4.53	4.000	0.109	4.53	3.782	Std.	009	980 086	1140	1370	1500	1700	1830 2290	1960 2450	2130 2660	2290 2860	2620 3000
	5.17	4.000	0.125	5.17	3.750	Std.		1130	1310	1580	1730	1950 2440	2630	2250 2810	2440 3000	2630 3000	3000
	5.81	4.000	0.141	5.81	3.718	Std.	800	1270	1480	1780	1950	2200	2370	2540 3000	2750 3000	2960 3000	3000
	6.40	4.000	0.156	6.40	3.688	Std.		1400	1640	1970	2150	2430	2620	3000	3000	0000	3000
	7.03	4.000	0.172	7.03	3.656	Std.	1000	1550	1810	2170	2370	2680	2890 3000	3000	3000	000	2006
	7.65	4.000	0.188	7.65	3.624	Std.	1200	1690	1970 1970	2370	2290 3000	2930 3000	3000	3000	3000	3000	3000
Std.	9.11	4.000	0.226	9.11	3.548	Std.	1200	2930	2370 2370	2850	3000	3000	3000	3000	3000 3000	3000 3000	2000
	.0.0.					AII.	l	2407	2007		2000	2222	0000	***			

Copyright by the American Petroleum Institute Wed Apr 12 11:23:20 2000

Continued
5 9/16
Through !
2 3/8
Sizes
es for
Pressures
Test
and
Weights,
Dimensions,
Pipe
Line
-End
-Plain
68
Table

18							-			API	SPEC	IFICA		5L 				 .	••			
i	(91)		Grade X80	3000 3000	3000 3000 3000	1770	2210 2670	900 900	3000 3000	3000 3000	3000 3000	3000 3000	3000 3000	3000 3000	3000 3000	3000 3000	3000 3000	3000 3000	3000 3000	3000	300 300 300	1430 2160 3000 3000 3000
	(15)		Grade X70	3000 3000	3000 3000	1550	1940 2330	2920 2630	3000 2910	300 3000	3000 3000	3000 3000	3000 3000	3000 3000	3000 3000	900 900	300 3000	3000 3000	3000 3000	3000 3000	3000 3000	1250 1890 2360 2840 3000 3000
panu	(14)		Grade X65	3000 3000	3000 3000	1440	2170	2710 2440	3000 2700	3000 2980	300 3000	3000 3000	3000 3000	3000 3000	3000 3000	300 3000	900 900	3000 3000	3000 3000	3000 3000	3000 3000	1160 1750 2120 3000 3000
Conti	(13)		Grade X60	3000 3000	3000 3000	1330	2000	2500 2260	2820 2500	3000 2750	3000 3000	3000 3000	3000 3000	3000 3000	3000 3000	300 3000	3000 3000	3000 3000	3000 3000	3000 3000	3000 3000	1040 1630 2020 2430 3000
h 5 %16-	(12)	psi) ^b	Grade X56	3000	900 900 900	1240	1870	2330 2110	2630 2330	2910 2570	3000 2810	3000 3000	3000 3000 3000	1000 1500 1910 2270 3000								
Throug	(11)	Pressure (Grade X52	3000		1150	1730	2170 1960	24 4 0 2160	2700 2390	2980 2610	3000 2810	3000 3000	000 000 000 000	930 1400 1750 2110 2890							
es 2 ^{3/8}	(10)	Minimum Test Pressure (psi) ^b	Grade X46	3000		1020	1530	1920	2160 1910	23 90 2110	2640 2310	2880 2490	3000 2690	3000 2910	3000 3000	3000 3000	3000 3000	3000 3000	3000 3000	900 9000	900 900 900	820 1240 1550 1870 2170 2560
for Siz	(6)	Mini	Grade X42	3000	990 900 900	930	1400	1/50	1970 1750	2180 1930	2410 2110	2630 2270	2840 2450	3000 2650	3000 2800	3000 3000	3000 3000	000 9000	3000 3000	900 900		750 1130 1410 1700 2340
ssures	(8)		Grade B	2800 2800	2800 2800 2800	170	0/6	1460	1650 1460	1820 1610	2010	2190 1890	2370 2040	2560 2210	2770 2330	2800 2620	2800 2800	2800 2800	2800 2800	2800 2800	2800 5800 5800	630 940 1180 1420 1650 1950
Test Pre	6		Grade A	2800 2530	2800 2800 2800	660	000	1130	1410	1560	1720 1500	1880 1620	2030 1750	2190 1900	2370 2000	2500 2250	2800 2500	2800 2700	2800 2800	2800 2800	2800 2800 2800	540 810 1010 1220 1420 1670
s, and ⁻	(9)		Grade A25	11	120	I	800		0001		1200		1200	1200				1700				670 840 1010 1180 1180
Weight				Alt. Std.	Alt. Std. Alt	Std.	Std.	Std.	Alt. Std.	Alt.	Alt. Std.	Std.	Alt. Std.	Std. Std. Std. Std. Std.								
Dimensions, Weights, and Test Pressures for Sizes 2 ^{3/8} Through 5 ^{9/16—} Continued	(2)	Inside	Diameter, d (in.)	3.438	3.364	4.334	4.250	4.218	4.188	4.156	4.124	4.094	4.062	4.026	4.000	3.938	3.876	3.826	3.624	3.438	3.152	5.397 5.313 5.251 5.187 5.125 5.047
ipe Dime	(4)	Plain- End	weignt, wr (lb/ft)	11.16	12.50	3.92	5.84	6.56	7.24	7.95	8.66	9.32	10.01	10.79	11.35	12.66	13.96	14.98	19.00	22.51	27.54	4.86 7.26 9.01 10.79 12.50 14.62
Table 6BPlain-End Line Pipe	(3)	Wall	I nickness, <i>I</i> (in.) ^a	0.281	0.318	0.083	0.125	0.141	0.156	0.172	0.188	0.203	0.219	0.237	0.250	0.281	0.312	0.337	0.438	0.531	0.674	0.083 0.125 0.156 0.188 0.188 0.219 0.258
3Plain-E	(2)	Outside	Diameter, D (in.) ^a	4.000	4.000	4.500	4.500	4.500	4.500	4.500	4.500	4.500	4.500	4.500	4.500	4.500	4.500	4.500	4.500	4.500	4.500	5.563 5.563 5.563 5.563 5.563 5.563
Table 6			Weight	11.16	12.50	3.92	5.84	6.56	7.24	7.95	8.66	9.32	10.01	10.79	11.35	12.66	13.96	14.98	00.61	22.51	27.54	4.86 7.26 9.01 10.79 112.50 14.62
	(1)	Designation	Wall		XS									Std.				SX			XXX	Std.
		ā	Nominal Size	4	4	41/2 ^c	41/2 ^c	41/2 ^c	41/2 ^c	41/2	41/2	41/2	41/2	41/2	41/2	41/2	41/2	41/2	41/2	41/2	41/2	59/16° 59/16° 59/16° 59/16 59/16

_ --

	(16)		Grade X80	3000	3000	3000	3000	3000	3000	3000
	(15)		Grade X70	3000	3000	3000	3000	3000	3000	3000
ned	(14)		Grade X65	3000	3000	3000	3000	3000	3000	3000
Contin	(13)		Grade X60	3000	3000	3000	3000	3000	3000	3000
Weights, and Test Pressures for Sizes 2 ^{3/8} Through 5 ^{9/16—} Continued	(12)	b) ^b	Grade X56	3000	3000	3000	3000	3000	3000	3000
Through	(11)	ressure (p	Grade X52	3000	3000	3000	3000	3000	3000	3000
. 9/8 Z 3/8	(10)	Minimum Test Pressure (psi) ^b	Grade X46	2790	3000	3000	3000	3000	3000	3000
for Size	(6)	Minin	Grade X42	2550	3000	3000	3000	3000	3000	3000
ssures	(8)		Grade B	2120	2360	2600	2800	2800	2800	2800
Test Pre	6		Grade A	1820	2020	2230	2430	2800	2800	2800
s, and ⁻	(9)		Grade A25	1520	1680	1860	2020	2700	2800	2800
				Std.	Std.	Std.	Std.	Std.	Std.	Std.
Pipe Dimensions,	(2)	Inside	d (in.)	5.001	4.939	4.875	4.813	4.563	4.313	4.063
Pipe Dime	(4)	Plain- End	weigin, w _{pe} (lb/ft)	15.85	17.50	19.17	20.78	27.04-	32.96	38.55
Φ	(3)	Wall	Inickness, t (in.) ^a	0.281	0.312	0.344	0.375	0.500	0.625	0.750
Table 6BPlain-End Lin	(2)	Outside	Dameter, D (in.) ^a	5.563	5.563	5.563	5.563	5.563	5.563	5.563
Table 6			Weight	15.85	17.50	19.17	20.78	27.04	32.96	38.55
	(E	Designation	Wall				XS			XXS
			Nominal Size	59/16	59/16	59/16	59/16	59/16	59/16	59/16

Note: See Appendix E, Tables E-1A, E-1B, and E-1C for metric unit equivalents of the U.S. customary values shown in this table. ^aOutside diameter and wall thickness dimensions shown are subject to tolerances described in Table 7. Inside diameters are nominal, and are given here for information (see Par. 7.2). ^bThe test pressures given in Tables 6A, 6B, and 6C apply to Grades A25, A, B, X42, X56, X66, X65, X70, and X80 only. See 9.4.3 for pressures applicable to other grades. ^cThese sizes are special plain-end weights. All other sizes are regular weight. See Table 7 for applicable weight tolerances. For Grades X42 and higher, weights intermediate to regular weights shall be considered regular weight; weights intermediate to special plain-end weights can weights; and weights intermediate to the heaviest tabulated special plain-end weights and the lightest regular weight shall be considered special plain-end weights; and weights intermediate to the heaviest tabulated special plain-end weight

API SPEC*5L 95 🖿 0732290 0541163 118 📟

SPECIFICATION FOR LINE PIPE

	(16)
	(15)
jh 80	(14)
Throu	(13)
zes 6₅/∉	(12)
s for Si	(11)
ressure	(01)
Test P	(6)
s, and	(8)
Weight	ε
isions,	9
be Dimen	(2)
d Line Pip	(4)
-Plain-Enc	(3)
Table 6C—	(2)

																				• • •																					
(11)		Grada	X80	0021		0/61	7550	0686	3000	3000	3000	3000	2000		3000	3000	3000	3000	3000	3000	3000	3000	3000	1740	2170	2620	2820	3000	3000	0005	0006	3000	3000	3000	3000	3000	3000	2000 0000	3000	3000	3000
(16)		Grade	X70	0001	1320	06/1	1980	0622	2730	2980	3000	3000	3000	2000	3000	3000	3000	3000	3000	3000	3000	3000	3000	1520	1900	2290	2470	2670	3000	3000		3000	3000	3000	3000	3000	3000		3000	3000	2000
(15)		Grade	X65	0001	0771	0001	1840 20e0	2300	2530	2770	2990	3000	2000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	1410	1760	2130	2290	2480	2830	3000		000	3000	3000	3000	3000	0000		2000	000E	3000
(14)		Grade	X60		0611	1480	00/1	0761	2340	2550	2760	2980	3000		3000	3000	3000	3000	3000	3000	3000	3000	3000	1300	1630	0961	2120	2290	2610	2890	2000	000	3000	3000	3000	3000	3000		3000	3000	3000
(13)	c (psi) ^b	Grade	X56	0201	0001	1500	0901	1980	2180	2380	2570	2780	3000	2000	3000	3000	3000	3000	3000	3000	3000	3000	3000	1220	1520	1830	2000	2130	2430	2700	3000	3000	3000	3000	3000	3000	3000	000£	3000	3000	3000
(12)	est Pressur	Grade	X52	000	096	0271	14/0	1840	2030	2210	2390	2580	2940		3000	3000	3000	3000	3000	3000	3000	0008	3000	1130	1410	1700	1840	1980	2260	2510	0100	3000	3000	3000	3000	3000	0000		2000	3000	3000
(I)	Minimum Test Pressure (psi) ^b	Grade	X46	0,0	002	1140		1620	1790	1960	2110	2280	2600	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	1000	1250	1500	1620	1750	2000	2220	0856	2750	3000	3000	3000	3000	3000		3000	3000	3000
(10)	M	eher.	X42	Q	R		061	1480	1640	1790	1930	2080	2380	2070	3000	3000	3000	3000	3000	3000	3000	3000	3000	010	1140	1370	1480	1600	1830	2020	2250	2510	2740	3000	3000	3000	3000		3000	3000	2000
6		Grade B	Alt.	0.7	000			1740	1360	1490	1610	1740	1980	0777	2500	2800	2800	2800	2800	2800	2800	2800	2800	UYL	950	1140	1240	1330	1520	0691	0061	2090	2280	2670	2800	2800	2800	0080	2800	2800	7800
8		Gra	Std.	002	9 <u>6</u>		R		0601	0611	1290	1390	1580	1080	2180	2380	2740	2800	2800	2800	2800	2800	2800	610	760	920	066	1070	1220	1350	0721	1680	1830	2130	2430	2740	2800	2800	2800	2800	0087
6		Grade A	Alt.	0.5	202	040	0020	1060	0ZU .	1280	1380	1490	00/1	0010	2340	2550	2800	2800	2800	2800	2800	2800	2800	650	810	980	1060	1140	1300	1450	1680	0621	1960	2290	2610	2800	2800	2800	2800	2800	7800
(9)		Gra	Std.	031	45U	8	080	850	930	1020	1100	0611	1360	1700	1870	2040	2350	2720	2800	2800	2800	2800	2800	520	650	780	850	016	1040	1160	1340	1440	1570	1830	2090	2350	2610	2800	2800	2800	7800
(2)	Inside	Diameter,	(in.)	037.0	904-0 704-2	104.0	C/ 5.0	6313	6.281	6.249	6.219	6.187	6.125 6.065	6.001	5.937	5.875	5.761	5.625	5.501	5.375	5.187	5.125	4.871	8 375	8.313	8.249	8.219	8.187	8.125	8.071	0.00 7 981	7.937	7.875	7.749	7.625	7.501	7.375	7 175	7.001	6.875	CZ0.0
(+)	Plain- End	Weight,	(lb/ft)	001	0.0 0.0 0.0 0.0 0.0	6C: /	8.08	07.6 10.78	11.85	12.92	13.92	14.98	17.02	21.04	23.08	25.03	28.57	32.71	36.39	40.05	45.35	47.06	53.73	11 35	14.11	16.94	18.26	19.66	22.36	24.70	28.55	30.42	33.04	38.30	43.39	48.40	53.40 40 71	17.00 17.00	67.76	72.42	81.44
(3)	Wall	Thickness,	(in.) ^a	600.0	0.083	601.0 201.0	C7 I 10	0.156	0.172	0.188	0.203	0.219	0.250	0.312	0.344	0.375	0.432	0.500	0.562	0.625	0.719	0.750	0.875	0.125	0.156	0.188	0.203	0.219	0.250	112.0	0 377	0.344	0.375	0.438	0.500	0.562	0.625	0.750	0.812	0.875	000.1
(2)	Outside	Diameter,	(in.) ^a	202	2070	5070	270.0	6.625	6.625	6.625	6.625	6.625	6.625 723 A	6,675	6.625	6.625	6.625	6.625	6.625	6.625	6.625	6.625	6.625 6.625	8 675	8.625	8.625	8.625	8.625	8.625	629.8	8 675	8.625	8.625	8.625	8.625	8.625	8.625	8.625	8.625	8.625	\$20.5
			Weight	00.2	08.0	607 0	0.00 0.76	10.78	11.85	12.92	13.92	14.98	10.07	21.04	23.08	25.03	28.57	32.71	36.39	40.05	45.35	47.06	53.73	58 11	14.11	16.94	18.26	19.66	22.36	24.70	28.55	30.42	33.04	38.30	43,39	48.40	53.40	63.08	67.76	72.42	81.44
Ξ	Designation		Wall										545				XS					0777	CVV								Std				XS					XXS	
	ă	Nominal	Size	25120	-7/8- 65/ec	-8/-0	0-/8- 65%c	65/8°	65/8	6 ⁵ /8	65/8	9/c9	078 656	65/g	65/8	6 ⁵ /8	65/8	62/8 256.d	65/8 65/8	85/8 ^c	85/8 ^c	82/8	82/8	82/8	82/8	87/8 0510	8/3/8	82/8	82/8	82/8	82/8	8/58	878 056	87% 85/8	82/8	82/8 82/8	81-8				

API SPECIFICATION 5L

(11)	•		Grade X80	02	2 8	22	22	8	Ş	Ş	88	38	38	38	88	8	8	88	38	800	30	10	2;	9 F	28	8	89	38	88	8	89	88	38	8	8:	38	38	۶	3
Ð			-	19	ι ĉ	22	57	30	30	30	õ S S	08 20 20 20 20 20 20 20 20 20 20 20 20 20	R Ç	n Ör	с Э́С	30	ð S	08	, S	Ř	18:	20.	21	235	ŝ	ğ	ĕ	ž ž	с Э́С	ğ	ğ	ě Š	м Э́с	300	300	2000	б Э	300	
(16)			Grade X70	1730	2080	2250	2420	2770	3000	3000	3000	0005		3000	3000	3000	3000	3000		3000	1610	1750	1890	2040	2620	2910	3000		3000	3000	3000		3000	3000	3000		3000	3000	2222
(15)			Grade X65	1600	0261	2090	2250	2570	2870	3000	3000		3000	3000	3000	3000	3000	0000		3000	1490	1630	1760	0061 0212	2440	2700	2860	0005	3000	3000	3000		0000	3000	3000		3000	3000	
(14)			Grade X60	1480	1780	1930	2080	2370	2650	2910	3000		0005	3000	3000	3000	3000	0002	0002	3000	1380	1500	1620	06/1	2250	2500	2640	0006	3000	3000	3000	2000		3000	3000	2000	3000	3000	
(13)	e (psi) ⁶		Grade X56	1380	1660	1800	1940	2210	2470	2720	3000	2000	3000	3000	3000	3000	3000	2000		3000	1280	1400	1520	1870	2100	2330	2460	2800	3000	3000	3000	0005	3000	3000	3000	3000	3000	3000	
(12)	st Pressure		Grade X52	1280	1550	1670	1800	2060	2290	2520	2830		3000	3000	3000	3000	3000	2000		3000	1190	1300	1410	0221	1950	2160	2290	2600	2810	3000	3000	2000	3000	3000	3000	3000	3000	3000	~~~~~
(11)	Minimum Test Pressure		Grade X46	1130	1370	1480	1590	1820	2030	2230	2500	2000	3000	3000	3000	3000	3000	2000		3000	1050	1150	1250	1530	1720	1910	2020	2300	2490	2690	3000		0000	3000	3000		3000	3000	
(10)	Mi		Grade X42	1040	1250	1350	- 1450	1660	1850	2040	2280	2420 2010	3000	3000	3000	3000	3000	2000		3000	096	1050	1140	1400	1570	1750	1850	2100	2270	2450	2800		3000	3000	3000		3000	3000	
(6)		Je B	Alt.	760	920	066	1070	1220	1360	1500	1680	1/80 2140	2440	2740	2800	2800	2800	2800	2800	2800	710	0/1	840	0.02	0911	1280	1360	1540	1670	1800	2060	2510	2800	2800	2800	2800	2800	2800	
(8)		Grade	Std.	610	730	790	860	980	1090	1200	1340	1710	1950	2200	2440	2800	2800	2800	2800	2800	570	620	0/9	028	930	1030	0601	1240	1340	1440	1650	2060	2270	2470	2670	2800	2800	2800	
6		le A	Alt.	650	790	850	920	1050	1170	1290	1440	1830	2090	2350	2620	2800	2800	2800	2800	2800	610	0 <u>9</u> 9	021	880	066	0011	1160	1210	1430	1550	1760	7710	2430	2650	2800	2800	2800	2800	
(9)		Grade	Std.	520	630	680	730	840	930	1030	1150	1470	1670	1880	2090	2410	2720	2800	2800	2800	490	530	0/5	070	790	880	026	1060	1150	1240	1410	1760	1940	2120	2290	2650	2800	2800	
(2)	Inside	Diameter,	d (in.)	10.438	10.374	10.344	10.312	10.250	10.192	10.136	10.062	9.874	9.750	9.626	9.500	9.312	9.126	8 874	8.750	8.250	12.406	12.374	12.344	12.250	12.188	12.126	12.090	12.000	11.938	11.874	11.750	079-11	11.374	11.250	11.126	10.874	10.750	10.626	
(4)	Plain- End	Weight,	w _{pe} (lb/ft)	17.65	21.21	22:87	24.63	28.04	31.20	34.24	38.23	40.40	54.74	61.15	67.58	77.03	86.18	01: 86	104.13	126.83	23.11	25.22	07.12	33.38	37.42	41.45	45.77	49.56	53.52	57.59	65.42 72 15	CI.C/ 80.93	88.63	96.12	103.53	110.97	125.49	132.57	
(3)	Wall	Thickness,	t (in.) ^a	0.156	0.188	0.203	0.219	0.250	0.279	0.307	0.344	0.203	0.500	0.562	0.625	0.719	0.812	0.938	0001	1.250	0.172	0.188	0.203	0.250	0.281	0.312	0.330	0.375	0.406	0.438	0.500	20C.0 0.625	0.688	0.750	0.812	0.938	1.000	1.062	
(2)	Outside	Diameter,	0 (in.) ⁸	10.750	10.750	10.750	10.750	10.750	10.750	10.750	05/.01	10.750	10.750	10.750	10.750	10.750	10.750	10.750	10.750	10.750	12.750	12.750	06/.21	12.750	12.750	12.750	05/71	12.750	12.750	12.750	12.750	12.750	12.750	12.750	12.750	12.750	12.750	12.750	
	_		Weight	17.65	21.21	22.87	24.63	28.04	31.20	34.24	38.23 40.48	48.24	54.74	61.15	67.58	77.03	80.18	98.30 98.30	104.13	126.83	23.11	25.22	02.12	33.38	37.42	41.45	45.77	49.56	53.52	57.59	65.42 73 15	61.67 80.93	88.63	96.12	103.53	118.33	125.49	132.57	
E	Designation	0	Wall								542		XS						XXS									Std.			XS						XXS		
	ă		Nominal Size	10 ³ /4 ^c	$10^{3/4}$ ^c	103/4 ^c	103/4	103/4	10:44	03/4	03/4	103/4	03/4	103/4	103/4	03/4	103/4	03/4	03/4	03/4	12 ^{3/4^c}	123/4 ^c	12 3/4 C	123/4	123/4	12 ³ /4	23/4 23/4	123/4	23/4	123/4	23/4	2 ³ /4	123/4	23/4	123/4	12 ³ /4	2 ³ /4	123/4	

SPECIFICATION FOR LINE PIPE

Copyright by the American Petroleum Institute Wed Apr 12 11:23:27 2000

2	^
2	2
_	_

API SPEC*5L 95 🗰 0732290 0541166 927 📟

API SPECIFICATION 5L

(1)		Grade X80	1970 1970 1970 1970 1970 1970 1970 1970
(16)		Grade X70	1600 1790 1790 1790 1790 1790 1790 1790 17
(15)		Grade X65	1480
(14)		Grade X60	1370 1530 1530 1530 1530 1530 1530 3000 300
(13)	(isd)	Grade X56	1280 1430 1430 1430 1430 1430 1430 1430 143
(12)	Minimum Test Pressure (psi) ^b	Grade X52	1190 1170 1170 1170 1170 1170 1170 1170
(11)	nimum Te	Grade X46	1050 1170 1170 1170 1170 1170 1170 1170 1170 1170 1170 1170 1170 1170 1170 1070 30000 3000 3000 3000 3000 3000 3000 3000 3000 3000
(01)	M	Grade X42	960 1120 1120 1120 1120 1120 1120 1230 30000 3000 3000 3000 3000 3000 3000 3000 3000 3000
6)	0	Alt	700 760 760 760 760 760 760 1760 1760 17
(8)	a spec	Std.	560 560 610 610 610 610 610 610 1120 1120 1120 1120 1120 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1210 1111111111
(1)		Alt.	600 650 650 650 650 650 650 650 650 1110 111
(9)	1 4 4 4 5 4 4 5 4 5 4 5 4 5 4 5 4 5 4 5	Std.	480 550 550 550 550 550 550 550 880 880 8
(2)	Inside	d d (in.)	13.624 13.624 13.580 13.581 13.582 13.582 13.582 13.582 13.582 13.582 13.582 13.582 13.582 13.586 13.586 13.586 13.158 13.154 13.155 13.155 13.155 13.156 12.124 13.155 12.550 12.550 12.550 12.550 13.550 15.562 15.552 15.562 15.562 15.562 15.562 15.562 15.562 15.562 15.562 15.562 15.562 15.562 15.562 15.562 15.562 15.562 15.562 15
(4)	Plain- End	weignt, ^w pe (Ib/ft)	27.73 29.91 29.29 29.13 29.29 29.28 29.28 29.28 29.28 29.28 29.29 20.17 20.29 20.17 20.29 20.20
(3)	Wall	t nickness, f (in.) ^a	0.188 0.188 0.219 0.219 0.219 0.219 0.219 0.219 0.219 0.219 0.219 0.250 0.469 0.469 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.288 0.289 0.280
(2)	Outside	Diameter, D (in.) ^a	14,000 16,000 16,000 16,000 16,000 16,000 16,000 16,000 16,000 16,000 16,000 16,000 16,000 16,000 16,000
	a	Weight	27.73 29.91 20.17
Ξ	Designation	Wall	× Std.
		Nominal Size	<u>*************************************</u>

_

- - ---

nued	
Conti	Ì
J	
gh 8	
hrou	
5/8 T	
tes 6	
or Siz	
es fc	
ssur	
t Pre	
d Tes	
, and	
ights	
, Ve	
sions	
nens	
e Dir	Ì
e Pip	
l Line	
-End	
Plain	
60 – P	
Ű	

-L				SPECIFICATION FOR LINE PIPE	
(11)		Grade X80	3000 3000 3000 3000 3000	1420 1420 2120 2120 2250 3000 3000 3000 3000 3000 3000 30	3000 3000 3000
(91)		Grade X70	3000 3000 3000 3000	1240 1450 1450 22060 3000 3000 3000 3000 3000 3000 30	300 300 300
(15)		Grade X65	3000 3000 3000	1150 1350 1350 1350 1350 1350 1350 1350	3000 3000 3000 3000 3000
(14)		Grade X60	3000 3000 3000 3000	1070 117700 11700000000	3000 3000 3000 3000 3000
(13)	(bsi) ⁰	Grade X56	3000 3000 3000 3000	990 990 990 990 990 990 990 990 990 990	2830 3000 3000 3000
(12)	Minimum Test Pressure (psi) ⁰	Grade X52	3000 3000 3000 3000	920 11230 11200 11000 11000 11000 11000 110000 11000000	2030 3000 3000 3000
(11)	num les	Grade X46	3000 3000 3000 3000	820 950 950 11220 11220 11220 11220 11220 3000 300	2550 2590 3000
(10)	W	Grade X42	3000 3000 3000 3000	750 870 870 870 870 870 11110 11100 11100 11100 3000 3000 300	21.20 2360 2840
6)	e B	Alt.	2800 2800 2800 2800 2800	550 640 820 820 820 820 820 1180 1180 1180 118	1480 1640 1810 1970
(8)	Grade B	Std.	2620 2790 2800 2800 2800	440 580 580 580 580 580 580 580 580 1170 1170 1170 1170 1170 1170 1170 11	1310 1310 1440 1580
6	le A	Alt.	2800 2800 2800 2800 2800	470 550 620 620 620 1100 1170 1170 1170 1170 1170 1170 11	1200 1410 1550 1690
9	Grade	Std.	2250 2390 2530 2670 2800	380 560 560 560 560 620 650 650 112500 112500 112500 1120000000000	1010 1120 1240 1350
3	Inside Diameter,	d (in.)	14.000 13.876 13.750 13.624 13.500	17.624 17.502 17.502 17.502 17.502 17.138 17.124 17.124 17.124 17.124 17.124 17.124 17.124 17.124 17.124 17.126 15.500 16.000 16.500 16.500 16.500 16.500 16.500 16.500 16.500 19.312 19.312 19.312 19.312 19.325 19.355 19.355 19.355 19.355 19.355 19.355 19.3555 19.3555 19.3555 19.3555 19.35555 19.355555 19.3555555555555555555555555555555555555	18.875 18.750 18.624 18.500
(4) Plain	End Weight,	w _{pe} (lb/ft)	160.20 169.43 178.72 187.93 196.91	33.76 53.18 53.18 53.18 53.18 53.18 53.18 53.18 115.93 115.98 115.98 115.98 115.98 115.98 115.98 115.98 115.98 115.93 115.98 115.93 115.98 115	110.07 129.33 141.90 154.19
(3)	Wall Thickness,	t (in.) ^a	1.000 1.062 1.125 1.188 1.250	0.188 0.250 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.252 0.250 0.255 0.219 0.250 0.219 0.251 0.219 0.251 0.219 0.250 0.250 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.2500 0.2500 0.2500 0.250000000000	0.750 0.625 0.750
(2)	Outside Diameter,	D (in.) ^a	16.000 16.000 16.000 16.000	I 8,000 I 8,0000 I 8,0000 I 8,0000 I 8,0000 I 8,0000 I 8,0000 I 8,00	20.000 20.000 20.000
		Weight	160.20 169.43 178.72 187.93 196.91	33.76 41.59 53.18 53.18 54.87 54.39 54.15 54.13 54.13 115.98 115.	110.0/ 129.33 141.90 154.19
Ξ	Designation	Wall		X Std.	
	Ц	Nominal Size	5 5 5 5 5 5	33333333333333333388888888888888888888	88888

į

~	
2	4

API SPECIFICATION 5L

(11)		Grade X80	3000 3000 3000 3000 3000 3000 3000 300	2000 1500 1870 2250 2440 2630
(16)		Grade X70	3000 3000 3000 3000 3000 3000 3000 300	2130 2130 2130 2130 2130 2130
(15)		Grade X65	3000 3000 3000 3000 3000 3000 3000 300	1220 1370 1520 1680 1830 1980
(14)		Grade X60	3000 3000 3000 3000 3000 3000 3000 300	1130 1260 1550 1690 1830
(13)	(bsi) ^b	Grade X56	3000 3000 3000 3000 3000 3000 3000 300	1050 1050 1180 1310 1440 1710
(12)	st Pressure	Grade X52	3000 3000 3000 3000 3000 3000 3000 300	980 980 1100 1220 1340 1580
(11)	Minimum Test Pressure (psi) ^b	Grade X46	3000 3000 3000 3000 3000 3000 3000 300	860 870 1190 1190 1190 1190
(10)	W	Grade X42	3000 3000 3000 3000 3000 3000 3000 300	7900 890 1080 1180 1180
(6)	Grade R	Alt.	2300 2460 2750 2750 2750 2750 2750 2750 670 670 670 670 670 670 1190 1190 1190 1190 1190 1190 1190 12500 257500 2575000 2575000 257500 2575000 2575000 2575000 2575000 2575000 2575000 2550000 2550000 2550000000000	2500 550 610 680 820 820 820
(8)	C.	Std.	1840 1970 2350 2350 2490 2490 2620 5400 5400 5400 5400 5400 5400 5400 54	2500 440 550 660 660 710
(1)		Alt.	1970 22110 22250 22530 22550 22550 5750 570 570 570 570 570 570 570 570	530 530 530 530 530 530 530 580 580 580 580 580 580 580 580 580 58
(9)	A abort	Sid.	1580 1690 1800 1800 1800 1800 22250 2280 2280 2280 11330 113000 113000 113000 113000 113000 113000 113000 113000 110000 110000 110000 110000 11000000	2450 380 520 560 560 560 560
(5)	Inside	d d (in.)	18.250 17.750 17.750 17.750 17.750 17.750 17.750 17.750 17.750 17.750 17.750 17.250 21.376 21.312 21.376 21.312 21.3767 21.3767 21.3767 21.3767 21.376777777777777777777777777777	23.500 23.500 23.376 23.312 23.312 23.188 23.188
(4)	Plain- End Weicht	weight, Wpe (Ib/ft)	178.72 19096 202.95 202.95 202.95 202.95 202.95 202.88 202.88 202.88 114.81 114	528.41 63.41 71.18 78.93 86.91 94.62 102.31
(3)	Wall	t t (in.) ^a	0.875 0.875 0.938 1.000 1.002 1.125 1.1250 1.375 0.250 0.250 0.375 0.344 0.312 0.312 0.312 0.375 0.469 0.344 0.344 0.344 0.345 0.355 0.345 0.345 0.345 0.345 0.355 0.4560 0.4560 0.4560 0.45600000000000000000000000000000000000	0.250 0.250 0.281 0.312 0.375 0.406
(2)	Outside	D D (in.) ^a	22,000 20,000 20,00000000	22.000 24.000 24.000 24.000 24.000 24.000 24.000
	Ę	Weight	178.72 190.96 202.92 214.80 2256.78 226.13 50.94 55.18 79.56 55.18 79.56 114.81 170.27 197.41 197.41 197.41 197.41 197.41 197.48 157.60 170.23 197.48 156.60 170.23 183.75 1142.68 156.60 170.23 183.75 112.867 170.23 183.75 123.748 256.08 156.60 170.23 183.75 123.748 256.08 156.60 170.23 183.75 123.748 256.08 156.60 170.23 183.75 123.748 257.28 156.60 170.23 183.75 123.748 256.08 156.60 170.23 123.748 257.28 156.60 170.23 123.748 156.60 170.23 157.26 167.25 167.25 167.25 167.25 167.25 172.27 172.	328.41 63.41 71.18 78.93 86.91 94.62 102.31
(1)	Designation	Wall	X Std.	Std.
		Nominal Size	88888888888888888888888888888888888888	25 25 25 25 25 25 25 25 25 25 25 25 25 2

-

_

- ----

	ł
-	
ĕ	1
2	
÷	
S	
ŏ	
Ĭ	
h 80-0	
õ	1
Ē	
<u> </u>	
ō	
/ ₈ Thro	
\vdash	
5/8	
ö	
Ś	
С К	
r Sizes 6	
<u> </u>	
đ	
Ś	
ବ	
ssure	
ŝ	
Ð	1
٥	ł
st	
ğ	
d Test Pres	
2	
ធ	
တ်	
Ê	
D	
e/	
5	
ທົ	
Ĕ	
-2	
č	1
e	
<u> </u>	
Δ	
ø	1
ä	Į.
ш	
e	
Ē	
End Line	1
Ĕ	
щ	
<u>⊇</u> .	
a	
٩	
J.	
õ	
÷.	
able 6C-PI	
at	
F	
	1

														ę	Spe	CIF	ICA		N F(DR L	_INE	P	PE																		25
(11)		-	X80 X80	3000	3000	3000	3000	3000	3000	2000	3000	3000	3000	3000			3000	3000	3000	1380	1560	1730	1910	2080	2250	2430	2770	3000	3000	3000	2000	3000	3000	3000	1200	1450	1600	1770	0661	2250	2410
(16)		Ţ	X70	2630	2950	3000	3000	3000	0000		0000	3000	3000	3000			3000	3000	3000	0121	1360	1510	1670	1820	1970	0217	2420	2720	3000	3000	3000	3000	3000	3000	1130	1260	1400	1550	1830	0261	2110
(15)		Ţ	Vrade X65	2440	2740	3000	3000	3000	3000	3000		3000	3000	3000			3000	3000	3000	1120	0611	1400	1550	0691	1830	0/61	2250	2530	2810	3000	2000	3000	3000	3000	1040	1170	1300	1440	12/0	1830	1960
(14)		Ċ	X60 X60	2250	2530	2810	3000	3000	3000	2000	0000	3000	3000	3000			3000	3000	3000	0701	170	1300	1430	1560	1690	10501	2080	2330	2600	2860	2000	3000	3000	3000	060	1080	1200	1330	1450	1690	1810
(13)	e (psi) ^b	-	Virade X56	2100	2360	2630	2890	3000	3000	2000		3000	3000	3000		0002	3000	3000	3000	010	0601	1210	1330	1450	1570	00/1	1940)	2180	2420	2670	20102	3000	3000	3000	000	1010	1120	1240	1350	1580	0691
(12)	Minimum Test Pressure (psi) ^b	-	Vrade X52	1950	2190	2440	2680	2930	2930	3000	3000	3000	3000	3000	2000		3000	3000	3000	000	0101	1120	1240	1350	1460	- 0801	1800	2020	2250	2480	00/2	3000	3000	3000	070	940 940	1040	1150	1250	1460	1570
(11)	linimum T	-	Vade X46	1730	1940	2160	2370	2590	2800	0002		3000	3000	3000	0005		3000	3000	3000	000	0.05	666	1100	0611	1290	0651	1590	1790	0661	2190	2390	0607	2990	3000	017	,40 830	920	1020	0111	1300	1390
(10)	E	-	Grade X42	1580	1770	1970	2170	2360	2560	2/60	0008	3000	3000	3000	0002		3000	3000	3000	002	067	016	1000	0601	1180	1270	1450	1630	1820	2000	2180	2540 2540	2730	2910	007	090 260	840	930	1010	1180	1270
(6)		de B	Alt.	0601	1230	1370	1500	1640	1780	1910	0012	2300	2300	2300	0062	0022	2300	2300	2300	6003	025	630	069	760	820	880	006	1130	1260	1390	1510	1770	1890	2000	007	530	580	650	002 190	820	880
8		Grade	Std.	880	980	1090	1200	1310	1420	1530	1750	1860	1970	2080		2200	2300	2300	2300	10.04	450	500	560	610	099 272	01/	00/	016	1010	1110	1210	1410	1520	1620	000	570 420	470	520	560	099	700
6		еA	Alt.	940	1050	1170	1290	1410	1520	040	1880	0661	2110	2230	1062	0020	2300	2300	2300	007	400	540	600	650	200	09/	870	970	1080	0611	1300	1510	1620	1730	007	450 004 004	500	550	009	005	750
(9)		Grade A	Std.	750	840	940	1030	1120	1220	1310	1410	1590	1690	1780	1020	0/61	2160	2250	2300	750	002	430	480	520	560	610	009	780	870	950	1040	1210	1300	1380	000	360	400	440	480	260 560	600
(5)	- F I	Diameter,	d (in.)	23.000	22.876	22.750	22.624	22.500	22.376	22.250	22.124 22.000	21.876	21.750	21.626	212 UUC.12	0/5/12	21.126	21.000	20.876	JE 600	000.02	25.376	25.312	25.250	25.188	25.124 25.020	20002	24.876	24.750	24.624	24.500	24.376	24.124	24.000	003 LV	27.438	27.376	27.312	27.250	27.124	27.062
(4)	Plain-	End Weight,	^w pe (lb/ft)	125.49	140.68	156.03	171.29	186.23	201.09	216.10	231.03	260.17	274.84	289.44	303.71	16.116	346.50	360.45	374.31	20.07	C/ 90	85.60	94.26	102.63	110.98	119.57	12/.88	152.68	169.38	185.99	202.25	218.45	251.07	267.00		/4.09 83 19	92.26	101.61	110.64	128.93	137.90
3)	171	wall Thickness,	t (in.) ^a	0.500	0.562	0.625	0.688	0.750	0.812	0.875	1 000	1.062	1.125	1.188	062.1	216.1	1.438	1.500	1.562	0200	0.220	0.312	0.344	0.375	0.406	0.438	0.409	0.562	0.625	0.688	0.750	0.812	0.938	1.000	0.200	0.220	0.312	0.344	0.375	0.400	0.469
(2)		Uutside Diameter,	<i>О</i> (in.) ^а	24.000	24.000	24.000	24.000	24.000	24.000	24.000	24.000	24.000	24.000	24.000	24.000	24.000	24.000	24.000	24.000	000.70	26.000	26.000	26.000	26.000	26.000	26.000 27.000	26.000	26.000	26.000	26.000	26.000 26.000	26,000	26.000	26.000	000 000	28.000 28.000	28.000	28.000	28.000 28.000	28.000 28.000	28.000
		_	Weight	125.49	140.68	156.03	171.29	186.23	201.09	216.10	251.05	260.17	274.84	289.44	303.71 717.01	16./16	346.50	360.45	374.31		C/ .80 81 77	85.60	94.26	102.63	110.98	119.57	126.17	152.68	169.38	185.99	202.25	218.43	251.07	267.00	00 1 1	60.47 83.19	92.26	101.61	110.64	128.93	137.90
E		Designation	Wall	xs																				Std.			2X	2											Std.		
		1.	Nominal Size	24	24	24	24	24	24	24	77	24 24	24	24	77	47 6	74 24	54	24	500	20, 20,	8 %	5 26	26	26	58 58	07 X	26 26	26	26	26 26	97 97	50 26	26	200	78c 28c	28	28	58 58	58 78	28

Copyright by the American Petroleum Institute Wed Apr 12 11:23:33 2000

Table 6CPlain-End Line Pipe Dimensions, Weights, and Test Pressures for Sizes 65/6 Through 80Continued	
able 6CPlain-End Line Pipe Dimensions, Weights, and Test Pressures for Sizes $65/_8$	ontin
able 6CPlain-End Line Pipe Dimensions, Weights, and Test Pressures for Sizes $65/_8$	gh 80-
able 6CPlain-End Line Pipe Dimensions, Weights, and Test Pressures for Sizes 6	Throu
able 6CPlain-End Line Pipe Dimensions, Weights, and Test Pressures for Si	ss 6₅/ ₈
able 6CPlain-End Line Pipe Dimensions, Weights, and Test Pressures f	ŝ
able 6CPlain-End Line Pipe Dimensions, Weights, and T	ressures f
able 6CPlain-End Line Pipe Dimensions, Weights, an	F
able 6CPlain-End Line Pipe Dimensions, We	~
able 6CPlain-End Line Pipe Dimensio	<u>e</u>
able 6CPlain-End Line Pipe	imensio
able 6CPlain-End Lir	Pipe
able 6CPlain-En	Ľ
able 6CPI	Ë
able	Ē
	able

;			API Specification 5L
(17)		Grade X80	2570 3000 3000 3000 3000 3000 3000 3000 3
(16)		Grade X70	2250 22530 22530 3000 3000 3000 3000 11180 11180 11180 11180 11180 11180 11180 11180 11180 11180 3000 300
(15)		Grade X65	22500 22500 22500 3000 3000 3000 3000 30
(14)		Grade X60	1930 1930 22170 22170 22170 3000 3000 3000 1120 1120 1120 1120 112
(13)	: (psi) ^b	Grade X56	1800 22020 22020 22020 22020 33000 33000 33000 1160 1160 1160 1160
(12)	st Pressure	Grade X52	1670 1670 1880 2510 2710 2710 2710 2710 780 3000 3000 3000 3000 3000 3000 3000
(11)	Minimum Test Pressure	Grade X46	1480 1660 1660 1660 1850 2230 22400 22960 690 690 1720 11200 11000 112000 112000 11200000000
(10)	Mi	Grade X42	1350 1350 1350 1350 1869 1869 1869 1869 1869 1869 1100 1110 1110 1110 1110 1110 1126 1126
6		le B Alt.	940 1170 1170 1170 1170 1170 1170 1170 11
(8)		Grade Std.	750 750 840 840 840 840 840 840 840 11120 11220 11220 11220 11220 11220 1140 114
6		e A	800 800 800 800 800 800 800 800 800 800
(9)		Grade A Std. A	640 640 1120 1120 1120 1120 1120 1120 1120 11
(2)	Inside	Diameter, d (in.)	27.000 26.576 26.576 26.576 26.576 26.576 26.576 26.576 26.576 26.576 26.576 26.576 26.576 26.576 26.576 26.576 26.576 29.124 29.376 29.312 29.376 20.3775 29.376 20.3775 29.376 20.37755 20.37755 20.37755 20.37755 20.37755 20.377555 20.37755555555555555555555555555555555555
(4)	Plain- End	Weight, ^{W pe} (Ib/ft)	146.85 146.85 184.69 184.69 184.69 184.69 235.73 235.73 235.73 235.73 235.73 235.73 235.74 235.74 235.74 235.74 235.74 235.74 235.75 175.55 17
(3)	Wall	Thickness, t (in.) ^a	0.500 0.500 0.556 0.556 0.556 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.5500 0.5500 0.5500 0.5500 0.5500000000
(2)	Outside	Diameter, D (in.) ^a	28,000 28,000 28,000 30,0000 30,0000 30,000 30,000 30,000 30,000 30,000 30,000 30,000 30,0000
		Weight	146.85 184.96 184.96 184.96 184.96 184.96 184.96 184.95 194.95 195.95 195.95 195.06 19
(E	Designation	Wall	X gg X gg
	D	Nominal Size	3333333333333333 33333333333333 3333333

_

API SPEC*5L 95 📰 0732290 0541170 358 📰

Copyright by the American Petroleum Institute Wed Apr 12 11:23:35 2000

API SPEC*5L 95 🎟 0732290 0541171 294	A	PI	SPEC*5L	95		0732290	0541171	294	
--------------------------------------	---	----	---------	----	--	---------	---------	-----	--

SPECIFICATION FOR LINE PIPE

· -							·			5P		-104	HON	FO	R LIN	EP	IPE														
(12)		Grade X80	3000 3000	3000	3000	3000	3000	1060	1320	1460	1590	1860	1990	2120 2380	2650	3000	3000	3000	3000	3000	3000	3000	0001	1250	1380	1620	1750	1880	2250	2500	7750
(16)		Grade X70	3000 3000	3000	3000	3000	3000 3000	930	1160	1270	1390	1620	1740	1850 2080	2320	2780 2780	3000	3000	3000	3000	3000	3000	880 980	0601	1200	1420	1530	1640	0261	2190	2410
(15)		Grade X65	2970 3000	3000	3000	3000	3000 3000	860	0/6	1180	1290	1510	1610	1930	2150	2580 2580	2790	3000	3000	3000	3000	3000	018 010	1010	1120	1320	1420	1520	1820	2030	0700
(14)		Grade X60	2740 2950	3000	3000	3000	3000 3000	062	068	1090	0611	1390	1490	1590	1990	2380	2580	2780 7980	3000	3000	3000	3000	750 840	940	1030	1220	1310	1410	1690	1880	0700
(13)	(red)	Grade X56	2560 2760	2950	3000	3000	3000	740	630 620	1020	0111	1300	1390	1480 1670	1850	2040 2220	2410	2590 2780	2960	3000	3000	3000	002	870	960	0001	1230	1310	1570	1750	0001
(11) (12) (13) Minimum Test Pressure (psi) ^b		Grade X52	2380 2560	2740	2920 2000	000 000 000	3000 3000	069	0/7	950	1030	1210	1290	1380	1720	1890 2060	2240	2410 2580	2750	2920	3000	3000	650 730	018	068	1060	1140	1220	1460	1620	0014
(11) Inimum Te		Grade X46	2260	2430	2590	2910 2910	3000 3000	610	080 760	840	016	1070	1140	1220	1520	1680 1830	1980	2130 2280	2440	2590	2.140	3000	580	720	062	000	1010	1080	1290	1440	1,000
(10) Mi		Grade X42	1920	2220	2360	2660	2810 2950	560	620 690	760	830 900	026	1040	1110	1390	1530	1810	1950 2000	2220	2360	2640 2640	2780	520	999	720	06/ 058	920	980	0501	1310	
6)	Grade B	Alt.	1330 1440	1540	1640	1/40	1950 2050	390	430 480	530	580	020 680	720	770 870	970	1160	1250	1350	1540	1640	1/40	1930	360	-450	500	000	640	680	05/ 020	910	0000
(8)	Grae	Std.	1150	1230	1310	1480 1480	1560 1640	310	955 905	420	460	540	580	620 690	770	850 930	0001	1160	1240	1310	1470 1470	1540	290 330	360	400	440 470	510	550	080	730	~~~
6	le A	Alt.	1140 1230	1320	1410	1490	1670 1760	330	370 410	460	500	580	620	660 740	830	016	1070	1160	1320	1410	1570	1650	310	966 966	430	470 510	550	590	620 700	780	
(9)	Grade A	Std.	910 980	1060	1120	1190	1340 1410	260	3300	360	400 400	460 150	500	530	660	730	860	930 000	1060	1120	130	1320	250	310	340	380	440 140	770	90 20 20 20 20	620	
(2)	Inside Diameter,	d (in.)	30.376 30.376	30.124	30.000	29.876 29.750	29.624 29.500	33.500	33.438 33.376	33.312	33.250	33.124	33.062	33.000 37 876	32.750	32.624 32 500	32.376	32.250	32.124 32.000	31.876	31.750 31.624	31.500	35.500 35.420	35.376	35.312	35.250	35.124	35.062	35.000 34 876	34.750	
(4) Plain-	End Weight,	w _{pe} (Ib/ft)	270.47 290.86	311.17	331.08	350.90 370.96	390.94 410.51	90.11	101.19	123.65	134.67	140.041	167.95	178.89 200.70	222.78	244.77 266.33	287.81	309.55 221 21	352.44	373.59	394.99 416.31	437.21	95.45 107 70	118.92	131.00	142.68	166.35	177.97	75.681	236.13	
(3)	Wall Thickness,	t (in.) ^a	0.812 0.875	0.938	1.000	1.062	1.188	0.250	0.281	0.344	0.375	0.400	0.469	0.500	0.625	0.688	0.812	0.875	1.000	1.062	(21.1 881.1	1.250	0.250	0.312	0.344	0.375	0.438	0.469	0.500	0.625	
(3)	Outside Diameter,	D (in.) ^a	32.000 32.000	32.000	32.000	32.000 32.000	32.000 32.000	34.000	34.000 24.000	34.000	34.000	34.000	34.000	34.000 24.000	34.000	34.000 34.000	34.000	34.000 24.000	34.000	34.000	34.000 34.000	34.000	36.000	36.000	36.000	36.000	36.000	36.000	36.000	36.000	
		Weight	270.47 200.86	311.17	331.08	350.90 370.96	390.94 410.51	90.11	101.19	123.65	134.67	147.00 151.00	167.95	178.89 200.70	222.78	244.77 266.33	287.81	309.55	352.44	373.59	394.99 416.31	437.21	95.45	118.92	131.00	142.68	166.35	177.97	189.57 212 70	236.13	
E	Designation	Wall									Std.			xs												Std.		ł	xs		
	D	Nominal Size	32	32 32	32	32	32	34°	34°	¥ ¥	34	45 25	34	34	34 F	34	5 7	34	¥ ¥	34	¥ ¥	8	36°	ý %	36	36 26	8 %	36	£ %	38	

20
20

Table 6C---Plain-End Line Pipe Dimensions, Weights, and Test Pressures for Sizes 65/8 Through 80---Continued

Grade X80 (11) Grade X70 (1030) (1140) (1 (91) Grade X65 (15) Grade X60 (14) Grade X56 $\begin{array}{c} 790\\ 870\\ 870\\ 940\\ 1100\\ 11260\\ 1280\\ 1730\\ 1730\\ 1730\\ 1730\\ 1730\\ 22520\\ 2250$ 2450 2800 2970 2970 2970 2970 2000 2000 (13) Minimum Test Pressure (psi)^b Grade X52 2280 2440 2600 2930 2930 2930 2930 (12) Grade X46 680 750 880 880 950 950 950 1020 11020 11020 11220 11220 11220 11220 11220 11220 11220 11220 11220 11220 122210 122111 12211 12211 12211 12211 12211 12211 12211 12211 1 2010 2300 2300 2590 2590 2590 2730 2730 Ξ Grade X42 (10) 1840 1970 22100 2230 2230 22490 2630 2630
 430

 520

 550

 550

 550

 550

 550

 550

 550

 550

 550

 550

 550

 550

 550

 550

 550

 550

 550

 550

 550

 550

 550

 550

 550

 550

 550

 550

 550

 550

 550

 550

 550

 550

 550

 550

 550

 550

 550

 550

 550

 550

 550

 550

 550

 550

 550

 550

 550

 550

 50

 < 1280 1370 1460 1550 1550 1550 1550 1550 1550 1550 Alt. 6 ю Grade] 1170 1170 1170 1310 1390 Std. 8 6 Alt. Grade A 880 940 1060 1130 250 250 Std. છ Inside Diameter, 34.250 34.124 34.000 33.876 33.500 33.500 35.750 35.624 35.500 37.750 37.624 37.312 39.376 (iii) 6 σ Plain-End Veight, **125.58 138.35 150.69 153.04 163.049 163.049 175.71 187.571** 328.24 351.25 373.80 396.27 441.69 441.69 441.69 132.25 145.69 171.68 185.06 185.06 185.06 185.06 210.93 314.39 335.62 35.62 ^{Wpe}(Ib/ft) (1 Wall Thickness, (in.)^a 0.312 0.375 0.375 0.375 0.406 0.438 0.438 0.438 0.438 0.438 0.688 0.688 0.688 0.625 0.625 0.625 0.638 0.638 0.638 0.638 0.638 0.638 0.638 0.638 0.500 0.5600 0.875 0.938 0.938 0.000 1.000 1.125 1.125 1.188 1.188 0.312 375 $\widehat{\mathbb{C}}$ Outside Diameter, (in.)^a 36.000 36.000 36.000 36.000 36.000 36.000 36.000 36.000 38.000 38.000 40.000 40.000 40.000 3 Weight 132.25 145.69 158.70 171.68 185.06 198.01 199.01 19 328.24 351.25 373.80 396.27 441.69 441.69 441.69 Designation Wall Ξ Std. XS Std. XS

API SPECIFICATION 5L

Copyright by the American Petroleum Institute Wed Apr 12 11:23:38 2000

Vominal Size

fest Pressures for Sizes 6₅/₀ Through 80—Continued	
and	
Weights,	
Dimensions,	
-ine Pipe	
lain-End l	

~			ھے ا	0	0	0	0	20		, c	0	0	0	0	0	0	20	2 0	0	Ģ	0	0	0	Q	•	2	ə c		. 0	o	0	ç	9	ç	ç	ç	ç	¢	0	0
(17)			Grade X80	3000	118	129	139	23	171	193	214	236	257	278	300	300				3000	113	123	133	143	153	40 1	101	325	245	260	286	90 00 00	3000	300	88	300	300	108	1170	127
(16)			Grade X70	3000	1030	1130	1220	1310	1500	1690	1880	2060	2250	2440	2630	2810	0008		3000	3000	066	1070	1160	1250	1340	1430	1200	1970	2150	2330	2510	2690	2860	3000	3000	3000	3000	940	1030	1110
(15)			Grade X65	3000	096	1040	1130	1220	1390	1570	1740	1920	2090	2260	2440	2610	2790	2000	3000	3000	016	1000	1080	1160	1250	1330	1660	1830	0661	2160	2330	2490 .	2660	2820	2990	3000	3000	870	950	1030
(14)			Grade X60	3000	880	096	1040	0611	1200	1450	1610	0//1	1930	2090	2250	2410	2570	06/2	3000	3000	840	920	1000	1080	1150	1230	1530	1690	1840	0661	2150	2300	2450	2610	2760	2920	3000	810	880	950
(13)	(psi) ^b		Grade X56	3000	830	006	670	1050	0001	1350	1500	1650	1800	1950	2100	2250	2400	0002	2850	3000	062	860	930	0001	1070	1150	1430	1580	1720	1860	2000	2150	2290	2430	2580	2720	2860	750	820	890
(12)	Minimum Test Pressure		Grade X52	2930	017	840	006	080	00111	1250	1390	1530	1670	1810	1950	2090	2330	25/0	2650	2790	730	800	860	930	1000	1060	1220	1460	1600	1730	1860	2000	2130	2260	2390	2530	2660	700	760	830
([])	iimum Tes		Grade X46	2590	680	740	800	860	000	0111	1230	1360	1480	1600	1720	1850	1970	0602	2340	2460	650	710	760	820	880	<u></u>	1000	1200	1410	1530	1650	1770	1880	2000	2120	2240	2350	620	680	730
(10)	Min		Grade X42	2360	620	680	730	062	840 000	1010	1120	1240	1350	1460	1580	1690	1800	0161	2140	2250	590	<u>8</u>	700	750	810	860 850	0/6	1180	1290	1400	1500	1610	1720	1820	1930	2040	2150	570	620	670
(6)		B	Alt.	1640	430	470	510	550	060	100	780	860	940	1020	1090	1170	1250	1330	1410	1560	410	450	480	520	560	89	0/0	000	890	016	1040	1120	1190	1270	1340	1420	1490	Uot	430	460
(8)		Grade	Std.	1310	340	380	410	440 045	6/4 2/0	900 199	620	690	750	810	880	940	<u>100</u>	1120	0611	1250	330	360	390	420	450	480	040	399	720	780	840	<u>906</u>	950	1010	1070	1130	1190	310	9 6	370
(1)		еA	Alt.	1410	370	400	430	470 500	200	909	670	740	800	870	940	1000	1070	1140	1270	1340	350	380	420	450	480	510	0/5	ŝ	90 L	830	890	096	1020	1090	1150	1210	1280	045	370	400
(9)		Grade A	Std.	1130	290	320	350	380	400	480	540	590	6 40	700	750	800	860	016	000	1070	080	310	330	360	380	410	99 1	260	610	660	720	770	820	870	920	970	1020	026	230	320
(5)	- Lacido	Diameter,	d (in.)	37.500	41.312	41.250	41.188	41.124	41.002	40.876	40.750	40.624	40.500	40.376	40.250	40.124	40.000	39.876	39.674	39.500	43 317	43.250	43.188	43.124	43.062	43.000	42.876	12 624	42 500	42.376	42.250	42.124	42.000	41.876	41.750	41.624	41.500	45 312	45.250	45.188
(4)	Plain- End	Weight,	w _{pe} (lb/ft)	517.31	153.04	166.71	180.35	194.42	208.03	248 77	276.18	303.55	330.41	357.19	384.31	411.35	437.88	464.32	491.11 517 82	554.01	160 39	174.72	189.03	203.78	218.04	232.29	260.72	219.75	346.43	374.53	403.00	431.39	459.24	487.01	515.14	543.19	570.71	167 74	182.73	197.70
(3)	Mall	Thickness,	t (in.) ^a	1.250	0.344	0.375	0.406	0.438	0.469	0.562	0.625	0.688	0.750	0.812	0.875	0.938	1.000	1.062	1188	1.250	0 344	0.375	0.406	0.438	0.469	0.500	0.562	0.699	0.750	0.812	0.875	0.938	1.000	1.062	1.125	1.188	1.250	0 344	0.375	0.406
(2)	- Chiefe	Diameter,	D (in.) ^a	40.000	42.000	42.000	42.000	42.000	42.000	42,000	42.000	42.000	42.000	42.000	42.000	42.000	42.000	42.000	42.000 47.000	42.000	44 DOO	44,000	44.000	44.000	44.000	44.000	44.000	44 000 M	44 000	44.000	44,000	44.000	44.000	44.000	44.000	44.000	44.000	46.000	46.000	46.000
	:		Weight	517.31	153.04	166.71	180.35	194.42	208.03	10.122	276.18	303.55	330.41	357.19	384.31	411.35	437.88	464.32	491.11 517 87	554.01	160 30	174.72	189.03	203.78	218.04	232.29	260.72	20 20 20 20 20 20 20 20 20 20 20 20 20 2	346.43	374.53	403.00	431.39	459.24	487.01	515.14	543.19	570.71	167 74	182.73 -	197.70
(;)		Designation	Wall			Std.			~													Std.				XS													Std.	
		ב 	Nominal Size	40	42	42	42	42	42	47	42	42	42	42	42	42	42	45 2 5	47 47	42	44	4	44	4	44	4	44	‡ ₹	14	. 4	4	44	4	44	44	4	44	46	6 4	46

20	
30	

API SPEC*5L 95 🗰 0732290 0541174 TT3 🖿

							_								AF1	JPE	:01-							-			-				-							
(11)			Grade X80	1570	1760	0961	2150	2350	04C2	2940	3000	3000	0000	900 900	1030	1130	1310	1410	1500	1690	1 0 0 0 2 0 6 0	2250	2440	2630	3000	3000	3000	000 000 000	0701	1120	1210	1300	1380	0001	0161	2080	2250	2420
(91)			Grade X70	1370	1540	1710	1880	2050	2220	2570	2740	2910	0002	3000	006	086	1150	1230	1310	1480	1810	1970	2130	2300	2460 2630	2790	2950	3000		016	1060	1140	1210	1510	1670	1820	1970	2120
(15)			Cirade X65	1270	1430	1590	1750	0161	20/07	2390	2540	2700	2860	3000	840	016	1070	1140	1220	1370	1680	1830	1980	2130	2290 2440	2590	2740	2900 3000	040	010	066	1060	1130	1260	1410	1690	1830	1970
(14)		•	Urade X60	1170	1320	1470	1620	1760	2050	2200	2350	2490	2640	2930 2930	770	840	016	1060	1120	1260	1410	1690	1830	1970	2110	2390	2530	2670 2810	0.01	00/ 840	016	010	1040	11/0	1430	1560	1690	1820
(13)	e (psi) ^b	•	Grade X56	1100	1230	1370	1510	1640	0201	2060	2190	2330	2470	2740	720	062	000	086	1050	1180	1440	1580	1710	1840	1970	2230	2360	2490 2620		002	850	016	970	0601	1210	1450	1570	1700
(12)	Minimum Test Pressure		Grade X52	1020	1140	1270	1400	1530	1780	0161	2030	2160	2290	2540	670	730	06/	910	980	1100	1340	1460	1580	1710	1830	2070	2190	2320 2440	007	080	190	840	006	0101	1240	1350	1460	1580
(11)	inmum Te		Grade X46	006	1010	1120	1240	1350	1580	1690	1800	1910	2020	2250	590	650 700	760	810	860	026	1190	1290	1400	1510	1620	1830	1940	2050 2160		000	002	750	800	068	001	1190	1290	1390
(10)	W		Grade X42	820	920	1030	1130	1230	1330	1540	1640	1750	1850	2050	540	590	040 040	740	790	068	080 1080	1180	1280	1380	1480	1670	1770	1870		000	83 8	680	730	820	0001	0601	1180	1270
(6)		de B	Alt.	570	640	710	790	860	1000	1070	1140	1210	1280	1430	380	410	440 480	510	550	610	750	820	890	096	1030	1160	1230	1300		0.00	440	470	500	570	069	760	820	880
(8)		Grade	Std.	460	510	570	630	680	04/	860	910	0/0	1030	1140	300	330	005 085	410	440	490	000	099 9	710	770	820	930 930	980	1040		320	350	380	400	450	260 560	610	660	710
6		lde A	Alt.	490	550	610	670	730	06/	020	980	1040	801	1220	320	350	380 410	9 4 0 4	470	530	06 07 07 07 07 07 07 07 07 07 07 07	202	760	820	880 040	1000	1050	1110		350	380	410	430	490	9 9 9 9 9	650	700	760
(9)		Grade	Std.	390	440	490	540	590	640 680	730 730	780	830	880	980 980	260	280 350		350	380	420	4/0 520	560	610	660	700	800	840	890 040 040			8	320	350	96 6	480	520	560	610
(2)	Incide	Diameter,	d (in.)	45.000	44.876	44.750	44.624	44.500	44.376	44.124	44.000	43.876	43.750	43.500	47.312	47.250	47.138	47.062	47.000	46.876	46.624	46.500	46.376	46.250	46.124 46.000	45.876	45.750	45.624 45.500	03013	88115	51.124	51.062	51.000	50.876	50.624	50.500	50.376	50.250
(4)	Plain- Fnd	Weight,	w _{pe} (lb/ft)	242.97	272.73	302.88	332.95	362.45	391.88 171.60	451.42	480.60	509.69	539.17	597.41	175.08	190.74	2002/2002	238.08	253.65	284.73	347.64	378.47	409.22	440.38	471.46 501.06	532.38	563.20	593.94 624.11		07.002	241.20	258.11	275.01	308.74	377.03	410.51	443.91	477.76
(3)	Wall	Thickness,	r (in.) ^a	0.500	0.562	0.625	0.688	0.750	0.812	0.938	1.000	1.062	1.125	1.158	0.344	0.375	0.400 0.438	0.469	0.500	0.562	0.688	0.750	0.812	0.875	0.938	1.062	1.125	1.188	326.0	0.406	0.438	0.469	0.500	0.562	0.688	0.750	0.812	0.875
6	Outeide	Diameter,	D (III.) ^a	46.000	46.000	46.000	46.000	46.000	46.000	46.000	46.000	46.000	46.000	46.000	48.000	48.000	48.000 48.000	48.000	48.000	48.000	48.000	48.000	48.000	48.000	48.000 48.000	48.000	48.000	48.000 48.000		52,000	52.000	52.000	52.000	52.000	52.000	52.000	52.000	52.000
	-		Weight	242.97	272.73	302.88	332.95	362.45 201.00	391.88 471.60	451.42	480.60	509.69	539.17	597.41	175.08	190.74	200.27	238.08	253.65	284.73	347.64	378.47	409.22	440.38	471.46 501.96	532.38	563.20	593.94 624.11		07.002	241.20	258.11	275.01	308.74	377.03	410.51	443.91	477.76
E	Decionation	201Brianto	Wall	xs												Std.			xs										770	.nic			XS					
	č	· •	Nominal Size	46	46	46	4 6	8	46 A6	4	4 9	4 6	\$	40 46	48	8 89	6 4 8 4	84	48	48	6 4 8	84	48	48	8 4 84	84	48	84 88 84	e (20	52	52	52	22	25	52	52	52

API SPEC*5L 95 🖿 0732290 0541175 93T 🛲

(17)		Grade X80	2770 2940 3000 3000	960 1130 1130 1130 1130 1450 1450 1450 1770 1770 1770 1770 1770 1770 1770 17	840
(16)		Grade X70	2420 2570 2730 2880 3000	840 910 910 910 910 910 1110 1110 1110 920 920 920 920 920 920 920 920 920 92	740
(15)		Grade X65	2250 2390 2530 2810	780 850 920 920 920 920 1170 1170 1170 117000 117000 11700000000	069
(14)		Grade X60	2080 2210 2340 2470 2600	720 780 780 780 780 780 1650 1650 1650 1690 1930 730 730 730 730 730 730 730 730 1930 1930 1930 1910 1910 1910 1910 19	630
(13)	e (psi) ^b	Grade X56	1940 2060 2180 2300 2420	670 730 730 730 11120 11240 11240 11240 11240 11260 11270 11260 11270 127000 127000 127000 1270000000000	590
(12)	Minimum Test Pressure (psi)	Grade X52	1800 1910 2030 2140 2250	630 680 680 940 1550 1150 1570 1570 630 630 630 630 630 630 630 630 630 1570 1170 1170 1170 1170 1170 1170 117	550
(H)	inimum Te	Grade X46	1590 1690 1790 1890	550 650 650 650 650 650 920 1110 1110 1120 1120 650 650 650 650 650 650 1120 1120 1120 1120 1120 1120 1120 11	490
(10)	W	Grade X42	1450 1540 1640 1730 1820	<pre>510 550 550 550 550 550 663 663 663 663 663 663 1110 1110 1110</pre>	440
(6)	de B	Alt.	1010 1070 1140 1260	350 350 350 350 350 550 550 550 550 1000 11110 1110	310
(8)	Grade	Std.	810 810 916 91 0 91 0 910	280 330 330 330 330 330 330 330 550 550 330 550 330 550 55	250
6	de A	Alt.	870 920 970 1030	330 330 330 330 330 330 330 330 330 330	260
(9)	Grade	Std.	690 740 820 870	250 320 <td>210</td>	210
(2)	Inside Diameter.	d (in.)	50.000 49.876 49.750 49.624 49.500	 55.250 55.124 55.124 55.124 55.124 55.124 55.062 55.062 55.124 55.124 55.124 55.124 54.124 54.126 55.200 55.200 55.200 55.200 55.200 55.200 56.200 57.624 57.626 57.626 57.626 57.626 57.626 57.626 57.626 57.626	63.250
(4)	Plain- End Weight.	wpe (Ib/ft)	544.68 577.75 611.26 644.69 677.51	222.78 229.105 259.91 228.15 228.15 228.15 228.15 228.16 238.80 258.14 258.14 258.14 258.14 258.14 258.14 258.14 258.14 258.14 258.14 258.14 258.14 258.14 258.14 258.15 258.100 258.100 258.100 258.100000000000000000000000000000000000	254.82
(3)	Wall Thickness.	f (in.) ^a	1.000 1.062 1.125 1.188 1.250	$\begin{array}{c} 0.375\\ 0.406\\ 0.406\\ 0.500\\ 0.562\\ 0.562\\ 0.562\\ 0.562\\ 0.575\\ 0.575\\ 0.375\\ 0.375\\ 0.375\\ 0.375\\ 0.438\\ 1.125\\ 0.438\\ 1.250\\ 0.562\\ 0.438\\ 0.438\\ 0.438\\ 0.438\\ 0.562\\ 0.$	0.375
(2)	Outside Diameter.	D (in.) ^a	52.000 52.000 52.000 52.000 52.000	55,000 56	64,000
		Weight	544.68 577.75 611.26 644.69 677.51	222.78 225.91.06 2259.91 2278.15 2278.15 2258.40 251.514 251.514 252.52 258.40 2258.40 2258.40 2258.40 2258.40 238.19 238.19 238.19 2745.52 238.19 2745.52 257.52 278.19 2745.20 278.20 278.20 278.22 278.22 278.20 278.222	254.82
Ξ	Designation	Wall			
	De	Nominal Size	22222	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	74

API SPEC*5L 95 🖿 0732290 0541176 876 🖿

(11)		Grade X80	1060 1130 1130 1550 1550 16530 1830 1830 1970 1970 1970 1970 1970 1970 1970 197	2500
(16)		Grade X70	920 920 1110 1110 11230 1480 1660 11720 1970 1970 1970 1970 1970 1970 1970 197	2190
(15)		Grade X65	860 910 910 911 91240 11480 11480 11710 11710 11710 970 970 970 970 970 1940 11720 11880 11880 11720 11880 11720	2030
(14)		Grade X60	790 840 840 840 840 1150 1150 1580 1580 1580 1580 1590 1990 1990 1990 1990 1990 1990 199	1880
(13)	: (psi) ^b	Grade X56	740 790 890 890 890 890 890 890 1180 1180 118	1750
(12)	st Pressure	Grade X52	690 730 820 820 820 820 11100 11100 11550 11550 850 650 650 650 650 112800 11280 11280 112800 112800 112800 112800 112800 112800 112800 11280000000000	1630
(II)	Minimum Test Pressure	Grade X46	610 730 810 810 810 810 820 811 820 820 820 820 820 820 820 820	1440
(10)	W	Grade X42	 550 550 590 590 590 560 740 820 960 960 1110 1126 112	1310
6)		Alt.	380 510 550 550 550 550 550 550 550 530 530 53	910
(8)	cros	Std.	310 310 310 310 310 310 310 310 310 310	730
6	-	diaue A	3330 3330 3330 3330 3330 3330 3330 333	780
(9)		Std.	280 280 280 280 280 280 280 280 280 280	630
(5)	Inside	LJameter, d (in.)	63.082 63.082 62.876 62.876 62.504 62.504 62.500 62.500 61.750 61.750 61.750 61.750 61.750 61.750 61.750 61.750 61.750 61.750 61.750 61.750 65.750 66.375 67.375 67.375 67.375 67.375 67.375 67.375 67.375 67.375 67.375 67.375 67.375 67.375 67.375 67.375 67	69.500
(4)	Flain- End	weignt, w _{pe} (lb/ft)	318.22 339.09 330.76 465.21 566.22 557.98 557.71 755.44 796.95 557.71 755.44 796.95 560.45 570.71 881.81 891.11 881.56 881.56 617.35 881.56 88	944.51
(3)	Wall	Inickness, <i>I</i> (in.) ^a	0.469 0.502 0.562 0.562 0.563 0.568 0.568 0.750 0.750 0.750 0.750 0.5620	1.250
(2)	Outside	Dlameter, D (in.) ^a	64,000 64,000 64,000 64,000 64,000 64,000 64,000 64,000 64,000 68,000 69,000 69,000 60,0000 60,0000 60,0000 60,0000 60,0000 60,00000000	72.000
	F	Weight	318.22 339.09 339.09 339.05 557.03 566.521 566.521 566.521 566.521 566.5221 566.5221 566.5221 561.74 6631.74 6631.74 713.85 6631.74 7155.56 671.82 538.66 627.28 6617.35 532.99 847.70 881.11 891.11 891.11 881.56 661.55 5523.99 847.70 881.56 5523.99 861.55 5523.99 861.55 5523.99 861.55 5523.99 861.55 5523.99 861.55 5523.99 861.11 881.55 5523.99 861.55 5523.99 861.55 5523.99 861.55 5523.99 861.55 5523.99 861.55 5523.99 861.55 5523.99 861.55 5523.99 861.55 5523.99 861.55 5523.99 861.55 5523.99 861.55 5523.99 861.55 5523.99 861.55 5523.99 861.55 5523.99 861.55 5523.99 861.55 5523.99 861.55 5523.99 861.55 5523.99 861.11 882.55 5523.99 861.55 5523.99 861.55 5523.99 861.55 5523.99 861.55 55555 555555 555555555555555555555	944.51
e	Designation	Wall		
	Ã	Nominal Size	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	72

_

_

-

---- -

Designation Outside Wall End Inside Grade A Grade B G	Designation Outside Wall End Initial Grade A Grade A <thgrade a<="" th=""> <thgrad a<="" th=""> Grad</thgrad></thgrade>	Designation		3	(3)	(4) Plain-	6	(o)	S	(9)	6	Min	(11) imum Te	Minimum Test Pressure (psi) ^b	(cri)				
D I W_{ep} d D I W_{ep} I W_{ep} I W_{ep} I W_{ep} I W_{ep} I W_{ep} I I W_{ep} I I W_{ep} I	inal D r inal Wall Weight $(in.)^a$ $(in.)^a$ $(in.)^a$ 452.79 76.000 0.562 503.13 76.000 0.562 503.13 76.000 0.562 503.13 76.000 0.562 503.13 76.000 0.562 503.13 76.000 0.562 503.13 76.000 0.562 503.12 76.000 0.562 533.38 76.000 0.625 533.38 76.000 0.750 0.812 7702.04 76.000 0.812 7702.04 76.000 0.812 7702.04 76.000 0.812 7702.04 76.000 1.125 999.20 76.000 1.125 999.20 76.000 1.125 997.21 80.000 0.562 552.83 80.000 0.562 552.83 80.000 0.562 552.83 0.562 552.83 0.500 0.562 552.83 0.500 0.562 552.83 0.500 0.562 552			Outside Diameter,	Wall Thickness,	End Weight,	Inside Diameter,	Grade	¥.	Grade	8			-			4.0	- Port	d
452.79 76.00 0.562 452.79 $74,87$ 370 310 <th>75 452.79 76.00 0.562 452.79 74.876 200 310 390 560 610 690 770 890 870 930 930 930 930 930 930 930 930 130</th> <th>_</th> <th>Weight</th> <th>D (in.)^a</th> <th>r (in.)^a</th> <th>w_{pe} (lb/ft)</th> <th>d (in.)</th> <th>Std.</th> <th>Alt.</th> <th>Std.</th> <th>Alt.</th> <th>Grade X42</th> <th>Grade X46</th> <th>Grade X52</th> <th>X56</th> <th>X60</th> <th>X65</th> <th>X70</th> <th>۶× </th>	75 452.79 76.00 0.562 452.79 74.876 200 310 390 560 610 690 770 890 870 930 930 930 930 930 930 930 930 130	_	Weight	D (in.) ^a	r (in.) ^a	w _{pe} (lb/ft)	d (in.)	Std.	Alt.	Std.	Alt.	Grade X42	Grade X46	Grade X52	X56	X60	X65	X70	۶×
503.13 76000 0.623 533.38 74.75 330 470 6.20 530 700 0.662 530.33 74.75 330 440 410 520 520 920 0070 1136 1240 1350 <td>6 503.13 76.00 0.625 503.13 74.750 500 770 500 750</td> <td>26</td> <td>452.79</td> <td>76.000</td> <td>0.562</td> <td>452.79</td> <td>74.876</td> <td>270</td> <td>330</td> <td>310</td> <td>390</td> <td>560</td> <td>610</td> <td>069</td> <td>750</td> <td>800</td> <td>870</td> <td>930</td> <td>21</td>	6 503.13 76.00 0.625 503.13 74.750 500 770 500 750	26	452.79	76.000	0.562	452.79	74.876	270	330	310	390	560	610	069	750	800	870	930	21
	76 5333 76000 0688 5333 7424 330 410 800 480 480 680 810 860 100 1130 1300 1330 1340 1500 76 789.05 76.000 1028 8190.25 73375 530 500 500 130 140 1500 1330 140 1500 1330 140 1500 1330 140 1500 1330 140 1500 1330 140 1500 1330 140 1500 1330 140 1500 1330 140 1500 1330 140 1500 1330 140 <td< td=""><td>76</td><td>503.13</td><td>76.000</td><td>0.625</td><td>503.13</td><td>74.750</td><td>300</td><td>370</td><td>350</td><td>430</td><td>620 (20</td><td>680</td><td>011</td><td>830</td><td>068</td><td></td><td>1140</td><td>= =</td></td<>	76	503.13	76.000	0.625	503.13	74.750	300	370	350	430	620 (20	680	011	830	068		1140	= =
	76 602.75 75.000 0.173 652.75 74.250 540 440 540 550 130 <	76	553.38	76.000	0.688	553.38	74.624	330	410	380	480 087	080	000		000	0201	1150	1240	14
552.04 76.000 0.8312 702.04 76.000 0.8312 702.04 76.000 0.8312 702.04 74.20 500 870 500 870 500 150 1540 1530 1430 1530 1540 1550 1540 1530 1430 1540 1530 1430 1540 1540 1550 1540 1550 1540 1540 1540 1540 1560 1730 1540 1560 1540 1540 </td <td>76 750 750 720 742 742 742 740 570 970 1200 1240 1240 1250 1240 1250 1250</td> <td>76</td> <td>602.75</td> <td>76.000</td> <td>0.750</td> <td>602.75</td> <td>74.500</td> <td>000</td> <td>044</td> <td>410</td> <td>07 G</td> <td>018</td> <td>070</td> <td>1000</td> <td>1080</td> <td>1150</td> <td>1250</td> <td>1350</td> <td>2</td>	76 750 750 720 742 742 742 740 570 970 1200 1240 1240 1250 1240 1250	76	602.75	76.000	0.750	602.75	74.500	000	044	410	07 G	018	070	1000	1080	1150	1250	1350	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	76	652.04 202.04	76.000	0.812	40.200 102.01	74.575	410 4	400 420	480	88	870	950	1080	1160	1240	1350	1450	ž
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	76 801.00 76.000 1000 801.00 76.000 1120 1230 1430 1420 1540 1660 1730 1870 231 230 1600 1730 1870 231 230 1600 1630 1760 1730 1870 231 230 230 230 230 130 1410 1500 1530 1470 1500 1230 1370 1470 1500 1230 1370 1370 230 230 230 230 230 1300 1490 1500 1320 1370 1300 <td>76</td> <td>107.04</td> <td>76,000</td> <td>0.938</td> <td>96 192</td> <td>74.124</td> <td>440</td> <td>200</td> <td>520</td> <td>650</td> <td>930</td> <td>1020</td> <td>1160</td> <td>1240</td> <td>1330</td> <td>1440</td> <td>1560</td> <td>5</td>	76	107.04	76,000	0.938	96 192	74.124	440	200	520	650	930	1020	1160	1240	1330	1440	1560	5
849.66 76.000 1.062 849.96 73.875 500 630 590 170 1310 1410 1510 1530 1700 999.62 76.000 1.125 899.62 73.750 530 670 620 780 1120 1230 1390 1400 1510 1510 1700 999.20 76.000 1.125 899.62 73.50 530 670 660 820 170 1580 1690 1830 1970 997.91 76.000 1.128 949.20 73.67 550 320 370 540 1580 1690 1780 1970 1970 997.91 76.000 1.250 97.91 73.500 590 170 1580 1700 1700 1780 1970 1970 1970 1970 1970 1970 1290 1470 1780 1780 1780 1700 1970 1700 1970 1700 1070 1070 1070	76 849.66 75.000 1.052 849.96 75.000 1.125 899.62 73.875 500 630 630 1300 1300 1500 1500 1500 1230 1870 230 8770 23 1730 1830 1300 1500 1300 1500 1300 1500 1300 1500 1300 1500 1230 1870 230 1730 1870 230 1800 1300 1600 1730 1870 230 240 210 1530 1670 1300 1500 1230 1870 230 270 280 730 1870 230 270 230 270 230 270 230 270 230 270 230 270 230 270 230 270 230 270 230 270 230 270 230 270 230 270 230 270 230 270 230 270 230 230 230 <	0/ 22	00108 00108	76,000	000.1	801.00	74.000	470	590	550	069	066	1090	1230	1330	1420	1540	1660	≌ ?
899.62 76.00 1.125 899.62 73.730 530 670 620 780 1120 1230 1390 1490 1000 1730 1970 997.91 76.000 1.250 997.91 73.500 590 740 660 1290 1540 1660 1780 1920 2070 997.91 75.000 0.562 476.80 7870 590 740 1660 1780 1920 2070 997.91 75.000 0.562 476.80 78776 530 370 540 1700 800 1700 1290 1780 1290 1780 1290 1780 1290 1780 1290 1780 1290 1780 1290 1780 1290 1780 1290 1780 1780 1290 1780 1290 1290 1290 1290 1290 1290 1290 1290 1290 1290	76 899.62 73.750 530 670 620 780 1120 1230 1430 1430 1630 1730 1970 227 76 997.91 76.000 1.125 899.62 73.502 530 70 660 120 1360 1540 1600 1770 207 20		849.96	76.000	1.062	849.96	73.875	500	630	590	730	1060	1160	1310	1410	1510	1630	00/1	47
949.20 76.000 1.188 949.20 73.50 590 700 650 820 1780 1290 1990	76 949.20 73.624 560 700 1230 1360 1540 1560 1780 1500 1730 1500 1570 1500 1730 1500 1730 1500 1730 1500 1730 1500 1730 1500 1730 1500 1730 1500 1730 1500 1730 1500 1730 1500 1730 1500 <th< td=""><td>76</td><td>899.62</td><td>76.000</td><td>1.125</td><td>899.62</td><td>73.750</td><td>530</td><td>670</td><td>620</td><td>780</td><td>1120</td><td>1230</td><td>1390</td><td>1490</td><td>1600</td><td>1020</td><td>0/01</td><td>3 6</td></th<>	76	899.62	76.000	1.125	899.62	73.750	530	670	620	780	1120	1230	1390	1490	1600	1020	0/01	3 6
997.91 76.000 1.250 997.91 73.500 590 740 690 1240 1350 17.500	76 997.91 76.000 1.250 997.91 73.500 590 740 1500 1500 1700 1200 1700 <	76	949.20	76.000	1.188	949.20	73.624	560	100	99	820	1180	0621	1400	0951	1700	0001	20700	16
476.80 80.000 0.562 476.80 7876 250 320 370 530 580 660 710 760 820 890 522.83 80.000 0.625 529.83 78.750 230 330 410 590 650 730 840 910 980 522.83 80.000 0.655 529.83 78.750 330 330 410 590 650 730 840 910 910 910 910 910 980 940 1010 190 130 530 770 890 940 1010 190 120 130 130 1010 1100 1190 1280 130 120 100 100 1000 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 120 380 940	80 476.80 80.000 0.562 476.80 780.000 0.562 529.83 78.750 230 370 530 580 660 710 760 820 890 110 180 110 180 110 180 110 180 110 1100 1100 1100 1100 1100 1100 1100 1100 1180 1280 120 120 120 800 100	76	16.766	76.000	1.250	16.766	73.500	590	740	690	860	1240	1300	0401	1001	1/00	0761	0/07	1
522.83 80.000 0.625 529.83 78.750 280 350 310 410 590 550 730 790 840 910 980 582 77 78.624 310 390 360 450 650 710 780 840 910 980 582 77 78.624 310 390 360 450 650 710 780 840 910 100 190 180 582 77 840 910 100 180 130 100 180 130 100 180 130 120	00 $529,83$ $80,000$ 0625 $529,83$ $78,750$ 530 410 590 650 730 790 840 910 900 1100 1180 1100 1180 1100 1180 1100 1180 1100 1180 1200 1100 1180 1200 1100 1180 1200 1180 1200 1180 1200 1180 1200 1180 1200 1180 1200 1180 1200 1180 1200 1180 1200 1180 1200 1180 1200 1180 1200 1180 1200 1180 1200 1180 1200 1180 1200 <td>Vo</td> <td>476 80</td> <td>X0.000</td> <td>0.562</td> <td>476.80</td> <td>78.876</td> <td>250</td> <td>320</td> <td>300</td> <td>370</td> <td>530</td> <td>580</td> <td>660</td> <td>710</td> <td>760</td> <td>820</td> <td>068</td> <td>Ξ:</td>	Vo	476 80	X0.000	0.562	476.80	78.876	250	320	300	370	530	580	660	710	760	820	068	Ξ:
582.77 80.000 0.688 582.77 78.624 310 390 360 450 550 710 800 870 930 1010 1080 1080 1080 1080 1080 1080 1080 1080 1080 1080 1080 1010 1080 1380 <th< td=""><td>80 582.77 80.00 0.688 582.77 78.624 310 390 360 450 510 800 870 930 1010 1080 110 1080 110 1080 1180 110 1080 1180 1280 1370 1480 1380 1380 1370 1480 1380 1370 1480 1380 138</td><td>00</td><td>529.83</td><td>80.000</td><td>0.625</td><td>529.83</td><td>78.750</td><td>280</td><td>350</td><td>330</td><td>410</td><td>590</td><td>650</td><td>730</td><td>R</td><td>840</td><td>016</td><td>0001</td><td>= -</td></th<>	80 582.77 80.00 0.688 582.77 78.624 310 390 360 450 510 800 870 930 1010 1080 110 1080 110 1080 1180 110 1080 1180 1280 1370 1480 1380 1380 1370 1480 1380 1370 1480 1380 138	00	529.83	80.000	0.625	529.83	78.750	280	350	330	410	590	650	730	R	840	016	0001	= -
634.79 80.000 0.750 634.79 78.500 340 420 390 490 710 780 880 940 100 1190 1190 1180 1280 130	80 634.79 80.000 0.750 634.79 78.500 340 420 390 490 710 780 880 790 100 1100 1100 1100 1100 1100 1100 1130 1280 1270 1380 1270 1380 <th1< td=""><td>80</td><td>582.77</td><td>80,000</td><td>0.688</td><td>582.77</td><td>78.624</td><td>310</td><td>390</td><td>360</td><td>450</td><td>650</td><td>012</td><td>388</td><td>8/0</td><td>066</td><td></td><td>11 80</td><td>12</td></th1<>	80	582.77	80,000	0.688	582.77	78.624	310	390	360	450	650	012	3 88	8/0	066		11 80	12
686.73 80.000 0.812 686.73 78.375 370 460 430 530 770 840 950 1020 1100 1170 1230 739.42 80.000 0.875 739.42 78.250 390 490 460 570 830 910 1020 1180 1270 1380 739.42 80.000 0.938 792.03 78.124 420 530 490 650 970 1100 1180 1270 1380 792.03 80.000 1.000 843.72 78.000 450 530 650 950 1000 1100 1180 1270 1380 843.72 80.000 1.062 895.33 77.875 480 600 560 950 1000 1100 1380 1570 1580 843.72 80.000 1.062 895.33 77.875 480 600 560 1000 1100 1280 1550 1670	80 686.73 80.000 0.812 686.73 78.375 370 460 430 530 770 840 920 1020 1100 1180 1280 </td <td>80</td> <td>634.79</td> <td>80,000</td> <td>0.750</td> <td>634.79</td> <td>78.500</td> <td>340</td> <td>420</td> <td>390</td> <td>490</td> <td>710</td> <td>08/</td> <td>088</td> <td>046</td> <td>0101</td> <td>3</td> <td>1000</td> <td></td>	80	634.79	80,000	0.750	634.79	78.500	340	420	390	490	710	08/	088	046	0101	3	1000	
739.42 80.000 0.875 739.42 78.250 390 490 460 570 830 910 1020 1100 1100 1200 1301 1200 1301 1200 1301 1200 1301	80 739.42 80.000 0.875 739.42 78.250 390 440 570 830 910 1020 1100 1130 1200 1300 1460 1500 1460 1500 1700 1500 1500 1500 1700 <	80	686.73	80.000	0.812	686.73	78.375	370	4 60	430	530	0/1	840	000	0701	0011	0611	1380	
792.03 80.000 0.938 792.03 78.124 4.20 530 4.90 6.20 8.90 9.70 1.00 1.20	80 792.03 80.000 0.938 792.03 78.124 420 530 490 520 970 1100 1120 1270 1200 1330 1460 1330 1460 1330 1460 1330 1470 1200 1200 1270 1300 1170 1200 1330 1460 1330 1470 1330 1470 1330 1470 1330 1470 1330 1470 1330 1470 1330 1470 1330 1470 1330 1470 1330 1470 1330 1330 1330 1330 1330 1330 1330 1330 1330 1300 1370 230 1770 230 1770 230 1300 1500 1500 1300 1370 1300 1370 1300 1370 230 1770 230 1300 1300 1300 1370 1300 1370 1300 1300 1370 1300 1370 1300 1300 13	80	739.42	80.000	0.875	739.42	78.250	390	66	460	0/0	8.50	22	0701	0011	00001	1270	1480	: 2
843.72 80.000 1.000 843.72 78.000 450 560 550 700 100 1100 120 120 150 150 170 170 150 150 150 150 150 150 150 150 150 15	80 843.72 80.000 1.000 843.72 78.000 450 500 500 700 1000 1100 1200 1400 1500 1500 1700	80	792.03	80.000	0.938	792.03	78.124	420	290	6	6 20	040	0/6		1060	1350	1460	1580	: =
895.33 80.000 1.062 895.33 77.875 480 600 500 740 100 1100 1200 1500 170 170 170 947.68 80.000 1.125 947.68 77.750 510 630 590 740 1060 1160 1320 1420 1520 1650 1770 999.95 80.000 1.188 999.95 77.624 530 670 620 780 1120 1230 1390 1500 1600 1740 1870 1001 1001 1001 1001 1001 1001 100	80 895.33 80.000 1.062 895.33 77.875 480 600 500 100 120 120 120 120 120 120 170 22 80 947.68 80.000 1.125 947.68 77.750 510 630 590 740 1060 1160 1320 1500 1600 1700 2 80 999.95 77.624 530 670 620 780 120 1570 1650 1770 2 80 999.95 77.624 530 670 620 780 1200 1270 1690 1870 2 80 1051.31 77.50 1051.31 77.50 560 700 660 820 180 1290 1290 1570 1690 1870 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	80	843.72	80.000	1.000	843.72	78.000	420 5	000	052		200	0011	0/11	1340	1430	1550	1670	-
947.68 80.000 1.125 947.68 77.750 510 0.30 530 1.40 1.00 1.100 1.50 1.600 1.740 1870 1999.15 77.624 530 670 620 780 1120 1230 1390 1500 1600 1740 1870 1000 1.550 1050 1.550 1050 1050 1050 1	80 947.68 80.000 1.125 947.68 77.790 510 620 780 1200 1200 1500 1600 1740 1870 2 80 999.95 77.624 530 670 620 780 1120 1230 1500 1600 1740 1870 2 80 999.95 77.624 530 670 660 820 1180 1290 1460 1570 1690 1870 2 80 1051.31 77.500 560 700 660 820 1180 1290 1570 1690 1870 27 2 2 3 3 3 1070 2 2 3 <td< td=""><td>80</td><td>895.33</td><td>80.000</td><td>1.062</td><td>895.33</td><td>C/8.11</td><td>184</td><td></td><td></td><td>3</td><td></td><td>911</td><td>0.51</td><td>1420</td><td>1520</td><td>1650</td><td>1770</td><td>5</td></td<>	80	895.33	80.000	1.062	895.33	C/8.11	184			3		911	0.51	1420	1520	1650	1770	5
999.95 80.000 1.158 959.95 7.7.054 2.50 700 660 820 1180 1290 1460 1570 1690 1830 1970	80 999.95 80.000 1.188 999.95 1.7.60 560 700 660 820 1180 1290 1460 1570 1690 1830 1970 2 80 1051.31 80.000 1.250 1051.31 77.500 560 700 660 820 1180 1290 1460 1570 1690 1830 1970 2 60e: See Appendix E, Tables E-1A, E-1B, and E-1C, for metric unit equivalents of the U.S. customary unit values shown in this table. Outside diameter and wall thickness dimensions shown are subject to tolerances described in Table 7. Inside diameters are nominal and are given here for information (see 7.2). The test pressures given in Tables 6A, 6B, and 6C apply to Grades A25, A, B, X42, X46, X55, X56, X60, molocomean Ext. Croake X42 and bioher weights intermediate to recular weights shal	80	947.68	80.000	1.125	947.68	00/11	010	050	2009	180	1120	1230	1390	1500	0091	1740	1870	2
	We will be a shown in this table. We see Appendix E, Tables E-1A, E-1B, and E-1C, for metric unit equivalents of the U.S. customary unit values shown in this table. We see Appendix E, Tables E-1A, E-1B, and E-1C, for metric unit equivalents of the U.S. customary unit values shown in this table. Outside diameter and wall thickness dimensions shown are subject to tolerances described in Table 7. Inside diameters are nominal and are given here for information (see 7.2). The test pressures given in Tables 6A, 6B, and 6C apply to Grades A25, A, B, X42, X46, X52, X56, X66, x65, x70 and X80 only. See 9.4.3 for pressures applicable to other grades. The test pressures given in Tables 6A, 6B, and 6C apply to Grades A25, A, B, X42, X40, X52, X50, X60, X65, X73 and index very his intermediate to recular weights shall	08 0	56.666	80.000 000.08	1.188	105131	77.500	260	80	3	820	1180	1290	1460	1570	1690	1830	1970	2

SPECIFICATION FOR LINE PIPE

33

Size Designation	Tolerance
< 2 ³ /8	+0.016, -0.031 in. (+0.41, -0.79 mm)
$\geq 2^{3}/_{8}$ and $\leq 4^{1}/_{2}$ Continuous welded	±1.00%
$\geq 2^3/_8$ and < 20	±0.75%
≥ 20 and ≤ 36 Nonexpanded Cold-expanded	±1.00% +0.75%, -0.25%
Larger than 36 Nonexpanded Cold-expanded ^a	$\pm 1.00\%$ + ¹ / ₄ in., - ¹ / ₈ in. (+6.35, -3.20 mm)

Table 7—Tolerances for Diameter of Pipe Body

^aIn the case of pipe hydrostatically tested to pressures in excess of standard test pressures, other tolerances may be agreed upon between the manufacturer and the purchaser.

Table 8—Tolerances for Diameter at Pipe Ends [Within 4 in. (101.6 mm) of the Pipe End]

Size Designation	Minus Tolerance	Plus Tolerance	End-to-End Tolerance	Out-of-Roundness Tolerance ^a
$\leq 10^{3}/_{4}$	¹ / ₆₄ in. (0.40 mm)	¹ / ₁₆ in. (1.59 mm)		_
$> 10^{3}/_{4}$ and ≤ 20	¹ / ₃₂ in. (0.79 mm)	³ / ₃₂ in. (2.38 mm)		_
> 20	¹ / ₃₂ in. (0.79 mm)	$^{3}/_{32}$ in. (2.38 mm)	b	±1%

^aOut-of-roundness tolerance applies to major axis (+1 percent of specified OD) and minor axis (-1 percent of specified OD) as measured with a bar gauge, caliper, or other device measuring actual major and minor axes. ^bOn welded expanded pipe, the diameter (as measured with a diameter tape) of one end of the pipe shall not differ by more than $\frac{3}{_{32}}$ in. (2.38 mm) from that of the other end.

Size	Type of	Tolerance ^a (percent o	f specified wall thickness)
Designation	Pipe	Grade B or Lower	Grade X42 or Higher
≤ 2.875 > 2.875 and < 20	All All	+20.0, -12.5 +15.0, -12.5	+15.0, -12.5 +15.0, -12.5
≥ 20 ≥ 20	Welded Seamless	+17.5, -12.5 +15.0, -12.5	+19.5, -8.0 +17.5, -10.0

Table 9-Tolerances for Wall Thickness

^aWhere negative tolerances smaller than those listed are specified by the purchaser, the positive tolerance shall be increased to the applicable total tolerance range in percent less the wall thickness negative tolerance.

34

Table 10-Tolerances for Weight (See Note)

Quantity	Tolerance (percent)
Single lengths, special plain-end pipe or A25 pipe	+10, -5.0
Single lengths, other pipe	+10, -3.5
Carload lots, Grade A25	-2.5
Carload lots, all other grades	-1.75

Note: Weight tolerance applies to the calculated weight for threaded-andcoupled pipe and to the tabulated or calculated weights for plain-end pipe. Where negative wall thickness tolerances smaller than those listed in Table 9 are specified by the purchaser, the plus weight tolerance for single lengths shall be increased to 22.5 percent less the wall thickness negative tolerance.

	(1)	(1	2)		(3)	((4)
	lominal ength ^a		mum ngth	Averag	imum e Length Order Item ^b		kimum Ength
			Threaded-a	and-Coupled	Pipe		
20 ft	(6m)	16.0 ft	(4.88 m)	17.5 ft	(5.33 m)	22.5 ft	(6.86 m)
40 ft	(12 m)	22.0 ft	(6.71 m)	35.0 ft	(10.67 m)	45.0 ft	(13.72 m)
			Plai	n-End Pipe			
20 ft	(6m)	9.0 ft	(2.74 m)	17.5 ft	(5.33 m)	22.5 ft	(6.86 m)
40 ft	(12 m)	14.0 ft	(4.27 m)	35.0 ft	(10.67 m)	45.0 ft	(13.72 m)
50 ft	(15 m)	17.5 ft	(5.33 m)	43.8 ft	(13.35 m)	55.0 ft	(16.76 m)
60 ft	(18 m)	21.0 ft	(6.40 m)	52.5 ft	(16.00 m)	65.0 ft	(19.81 m)
80 ft	(24 m)	28.0 ft	(8.53 m)	70.0 ft	(21.34 m)	85.0 ft	(25.91 m)

Table 11---Tolerences on Lengths

^aNominal lengths of 20 ft (6 m) were formerly designated "single random lengths" and those of 40 ft (12 m) "double random lengths."

^bBy agreement between the purchaser and the manufacturer, these tolerances shall apply to each carload.

8 Couplings

8.1 MATERIAL

Couplings for Grades A and B pipe shall be seamless and shall be made of a grade of material at least equal in mechanical properties to that of the pipe. Couplings for Grade A25 pipe shall be seamless or welded and shall be made of steel. By agreement between the purchaser and the manufacturer, welded couplings may be supplied on nominal pipe sizes 14 and larger, if the couplings are properly marked.

8.2 TENSILE TESTS

A tensile test shall be made on each heat of steel from which couplings are produced, and the coupling manufacturer shall maintain a record of such tests. This record shall be open to inspection by the purchaser. If such a test is made on finished couplings, either round specimens proportioned as specified in ASTM E 8, *Test Method for Tension Testing* of Metallic Materials, or strip specimens shall be used at the option of the manufacturer.

8.3 DIMENSIONS

Couplings shall conform to the dimensions and tolerances shown in Table 12 (see note) and Figure 2.

Note: Couplings covered by Table 12 are applicable to either standardweight or extra-strong pipe.

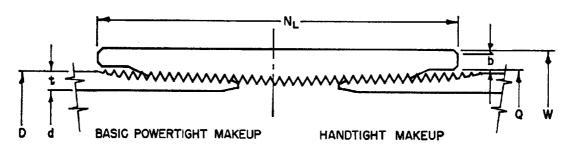
8.4 THREADING

Coupling threads, gauging practice, and thread inspection shall conform to the requirements of API Standard 5B. Couplings shall not be expanded to provide the required taper for threads.

8.5 INSPECTION

Couplings shall be free from blisters, pits, cinder marks, and other defects that would impair the efficiency of the coupling or break the continuity of the thread.

(1)	1	(2)		(3)	ł	(4)	(.	5)	-	(6)
Nominal Size	of Cou	Diameter pling, ^a W		imum gth, N _L		neter of ess, Q		ith of g Face, b		culated ng Weight
Designation	in.	mm	in.	mm	in.	mm	in.	mm	lb	kg
۱ _{/8}	0.563	(14.3)	1 ¹ / ₁₆	(27.0)	0.468	(11.9)	1/ ₃₂	(0.8)	0.04	(0.02)
1/ ₄	0.719	(18.3)	1 ⁵ /8	(41.3)	0.603	(15.3)	1/ ₃₂	(0.8)	0.09	(0.04)
³ /8	0.875	(22.2)	1 ⁵ /8	(41.3)	0.738	(18.8)	1/ ₃₂	(0.8)	0.13	(0.06)
۱ _{/2}	1.063	(27.0)	2 ¹ / ₈	(54.0)	0.903	(22.9)	1/ ₁₆	(1. 6)	0.24	(0.11)
³ / ₄	1.313	(33.4)	2 ¹ / ₈	(54.0)	1.113	(28.3)	1/ ₁₆	(1.6)	0.34	(0.15)
1	1.576	(40.0)	2 ⁵ /8	(66.7)	1.378	(35.0)	³ / ₃₂	(2.4)	0.54	(0.25)
1 ¹ /4	2.054	(52.2)	2 ³ / ₄	(69.8)	1.723	(43.8)	³ / ₃₂	(2.4)	1.03	(0.47)
۱ ^۱ /2	2.200	(55.9)	$2^{3}/_{4}$	(69.8)	1.963	(49.9)	³ / ₃₂	(2.4)	0.90	(0.41)
2	2.875	(73.0)	2 ⁷ /8	(73.0)	2.469	(62.7)	1/8	(3.2)	1.86	(0.84)
2 ¹ / ₂	3.375	(85.7)	4 ¹ / ₈	(104.8)	2.969	(75.4)	³ / ₁₆	(4.8)	3.27	(1.48)
3	4.000	(101.6)	4 ¹ / ₄	(108.0)	3.594	(91.3)	³ / ₁₆	(4.8)	4.09	(1.86)
3 ¹ / ₂	4.625	(117.5)	4 ³ / ₈	(111.1)	4.094	(104.0)	³ / ₁₆	(4.8)	5.92	(2.69)
4	5.200	(132.1)	$4^{1}/_{2}$	(114.3)	4.594	(116.7)	¹ / ₄	(6.4)	7.59	(3.45)
5	6.296	(159.9)	4 ⁵ / ₈	(117.5)	5.657	(143.7)	¹ / ₄	(6.4)	9.98	(4.53)
6	7.390	(187.7)	4 ⁷ /8	(123.8)	6.719	(170.7)	¹ /4	(6.4)	12.92	(5.87)
8	9.625	(244.5)	51/4	(133.4)	8.719	(221.5)	1/4	(6.4)	23.18	(10.52)
10	11.750	(298.4)	5 ³ /4	(146.0)	10.844	(275.4)	3/8	(9.5)	31.55	(14.32)
12	14.000	(355.6)	6 ¹ / ₈	(155.6)	12.844	(326.2)	³ /8	(9.5)	49.27	(22.37)
14D	15.000	(381.0)	6 ³ /8	(161.9)	14.094	(358.0)	³ /8	(9.5)	45.83	(20.81)
16D	17.000	(431.8)	6 ³ /4	(171.4)	16.094	(408.8)	3/8	(9.5)	55.83	(23.35)
18D	19.000	(482.6)	7 ¹ /8	(181.0)	18.094	(459.6)	3/8	(9.5)	66.53	(30.20)
20D	21.000	(533.4)	7 ⁵ /8	(193.7)	20.094	(510.4)	3/8	(9.5)	79.37	(36.03)


Table 12-Coupling Dimensions, Weights, and Tolerances

Note: See Figure 2.

^aTolerance on outside diameter, W_i is ± 1 percent.

36

SPECIFICATION FOR LINE PIPE

Note: See Table 4 for pipe dimensions, Table 12 for coupling dimensions, and API Standard 5B for thread details.

Figure 2—Line Pipe and Coupling

9 Inspection and Testing

9.1 TEST EQUIPMENT

If test equipment, whose calibration or verification is required under the provisions of the specification, is subjected to unusual or severe conditions sufficient to make its accuracy questionable, recalibration or reverification shall be performed before further use of the equipment.

9.2 TESTING OF CHEMICAL COMPOSITION

9.2.1 Heat Analyses

The steel manufacturer shall determine the analysis of each heat of steel used in the manufacture of pipe specified on the purchase order. The analysis so determined shall conform to the requirements of 6.1.1.

For Grade X80, heat analysis limits have not been defined, only product analysis limits.

9.2.2 Product Analyses

9.2.2.1 Sampling Frequency

The manufacturer shall determine the analysis of two samples representing each heat of steel used for the production of pipe under this specification.

9.2.2.2 Sampling Methods

9.2.2.2.1 Seamless Pipe

At the option of the manufacturer, samples used for product analyses shall be taken either from tensile test specimens or from the finished pipe.

9.2.2.2.2 Welded Pipe

At the option of the manufacturer, samples used for product analyses shall be taken from either finished pipe, plate, skelp, tensile test specimens, or flattening test specimens. The location of the samples shall be a minimum of 90 degrees from the weld of longitudinally welded pipe. For spiral weld, the sample location shall be at a position not less than one quarter of the distance between adjacent weld convolutions as measured from either edge of the weld. For pipe manufactured from plate or skelp, the product analyses may be made by the supplier of the plate or skelp providing the analyses are made in accordance with the frequency requirement of this specification.

9.2.3 Test Reports

The results of all specified chemical analyses shall be available to the purchaser upon request. When SR15 is specified by the purchaser (see Appendix F), the manufacturer shall furnish a report of all chemical analyses required by this specification.

For Grade A25, in lieu of furnishing a test report, the manufacturer may certify that the pipe furnished was produced in conformance with the requirements for chemical properties and tests of API Specification 5L.

9.3 TESTING OF MECHANICAL PROPERTIES

9.3.1 Tensile Tests

9.3.1.1 Tensile Testing Specimens

Tensile test orientation shall be as shown in Figure 3. At the option of the manufacturer for longitudinal seam welded pipe, the longitudinal specimens may be taken from the skelp parallel to the rolling direction and approximately midway between edge and center. At the option of the manufacturer, the specimen may be either full section, strip specimen, or round bar specimens as specified in 9.3.1.3, 9.3.1.4, and Figure 4. The type, size, and orientation of the specimens shall be reported. Strip specimens shall be approximately $1^{1}/_{2}$ in. (38.1 mm) wide in gauge length if suitable curved face testing grips are used or if the ends of the specimens are machined to reduce the curvatures in the grip area; otherwise they shall be approximately $\frac{3}{4}$ in. (19.0 mm) wide for pipe sizes $3^{1}/_{2}$ and smaller, approximately 1 in. (25.4 mm) wide for pipe sizes 4 through $6^{5}/_{8}$, and approximately $1^{1}/_{2}$ in. (25.4 mm) wide for pipe sizes $8^{5}/_{8}$ and larger. Alternatively, when grips with curved faces are not available, the ends of the specimens may be flattened without heating.

38

9.3.1.2 Tensile Testing Frequency

Tensile tests shall be made at the frequency shown in Table 13.

9.3.1.3 Longitudinal Tensile Tests

At the option of the manufacturer, longitudinal tests may utilize a full section specimen (see Figure 4, subfigure B); a strip specimen (see Figure 4, subfigure C); or for pipe with wall thickness greater than 0.750 in. (19.1 mm), a 0.500-in. (12.7-mm) diameter round bar specimen (see Figure 4, subfigure D). The strip specimen shall be tested without flattening.

9.3.1.4 Transverse Tensile Tests

The transverse tensile properties shall be determined, at the option of the manufacturer, by one of the following methods:

a. The yield strength, ultimate strength, and elongation values shall be determined on either a flattened rectangular specimen (see Figure 4, subfigure E) or on a 0.500-in. (12.7-mm) or 0.350-in. (8.9-mm) round bar specimen (see Figure 4, subfigure G).

b. The yield strength shall be determined by the ring expansion method (see Figure 4, subfigure A) with the ultimate strength and elongation values determined from a flattened rectangular specimen.

The same method of testing must be employed for all lots in an order item. All transverse tensile specimens shall be as shown in Figure 4. All specimens shall represent the full wall thickness of the pipe from which the specimen was cut, except for round bar tensile specimens.

Transverse round bar specimens are to be secured from nonflattened pipe sections. The 0.500 in. (12.7 mm) diameter round bar specimens shall be used when the pipe size allows, and the 0.350 in. (8.9 mm) diameter round bar specimen shall be used for other sizes. For pipe sizes too small to allow a 0.350 in. (8.9 mm) specimen, round bar tensile specimens are not permitted.

9.3.1.5 Weld Tensile Tests

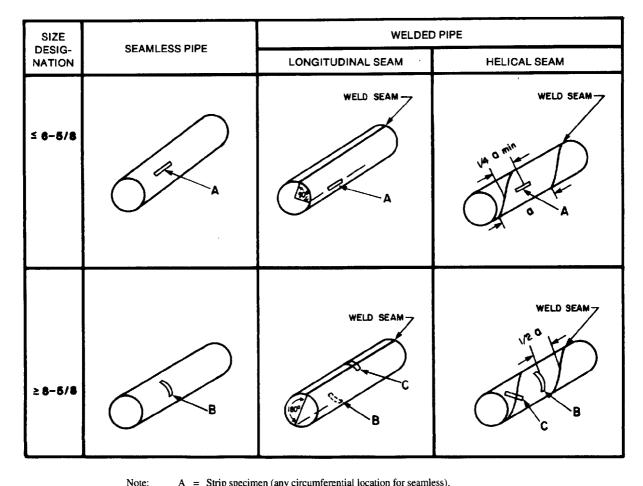
Weld tensile test specimens shall be taken at 90 degrees to the weld with the weld at the center as shown in Figures 3 and 4 and shall represent the full wall thickness of the pipe from which the specimen was cut. Weld reinforcement may be removed at the manufacturer's option. Weld tensile tests need not include determination of yield strength and elongation.

9.3.1.6 Control Tensile Tests

For pipe other than Grade A25, one tensile test per heat shall be made as a control, and a record of such tests shall be available to the purchaser. For longitudinal seam welded pipe, such tensile tests shall be made using samples taken from either plate, skelp, or finished pipe at the option of the manufacturer.

9.3.2 Flattening Tests

Flattening tests shall be performed for electric-welded and continuous welded pipe. Frequency of testing, sample location, and test orientation are shown in Figure 5. When a weld stop condition occurs during production of a multiple length, flattening tests with the weld at 90 degrees shall be made from the crop ends resulting from each side of the weld stop and may be substituted for the intermediate flattening tests (see note).


Note: Flattening tests with the weld at the 0 degrees orientation may be conducted at 180 degrees and the 90 degrees orientation at 270 degrees upon agreement between the purchaser and manufacturer.

	· · ·	-		
(1)	(2)	(3)	(4)	
Size Designation	Tensile Tests	Weld Tensile Tests	Control Tensile Tests	
$\leq 1^{1}/_{2}$ nom. A25 welded	1 per 25 tons or fraction thereof	_		
≥ 2 nom. A25 welded	1 per 50 tons or fraction thereof		—	
$\leq 5^{9}/_{16}$ except A25 welded	1 per 400 lengths	_	_	
$\geq 6^{5}/_{8}$ thru $12^{3}/_{4}$	1 per 200 lengths	—	One per heat on all sizes except for Grade A25	
> 12 ³ / ₄	1 per 100 lengths per cold expansion amount ^b	_		
8 ⁵ / ₈ thru 12 ³ / ₄		1 per 200 length	—	
> 12 ³ / ₄		l per 100 lengths ^a per cold expansion amount ^b	_	

Table 13—Frequency of Tensile Testing

^aEach weld for two-seam pipe.

^bPipe manufactured with the same nominal amount of cold expansion, ±0.2 percent, shall be considered to have the same cold expansion amount.

SPECIFICATION FOR LINE PIPE

= Strip specimen (any circumferential location for seamless).

В = Transverse specimen (any circumferential location for seamless). For double seam

pipe, the specimen shall be taken from a location midway between the welds.

Figure 3—Orientation of Tensile Test Specimens

9.3.3 Bend Tests

One full section specimen of appropriate length, cut from a length of pipe from each lot of 25 tons, or fraction thereof, for pipe of nominal sizes $1^{1}/_{2}$ and smaller, and from each lot of 50 tons, or fraction thereof, for pipe of nominal size 2, shall be bent cold through 90 degrees, around a mandrel having a diameter not greater than twelve times the outside diameter of the pipe being tested, with the weld located approximately 45 degrees from the point of contact of the specimen with the mandrel. No cracks shall occur in any portion of the pipe, and no opening shall occur in the weld.

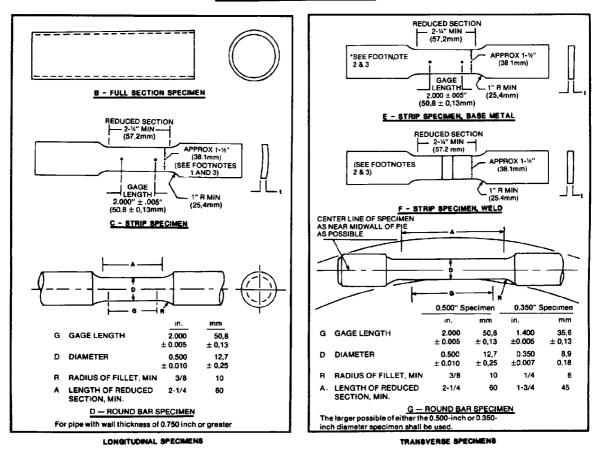
9.3.4 Guided-Bend Tests

The test specimens shall be taken from the helical or each longitudinal seam weld in a length of pipe from each lot of 50 lengths or less of each combination of outside diameter, wall thickness, and grade; and from a skelp end weld in a length of pipe from each lot of 50 lengths or less of each combination of outside diameter, wall thickness, and grade of finished helical seam pipe containing skelp end welds. The test specimens shall not contain repair welds.

9.4 HYDROSTATIC TESTS

9.4.1 Hydrostatic Test Requirements

Each length of pipe shall withstand, without leakage, an inspection hydrostatic test to at least the pressure specified


39

С Transverse weld specimen.

Note: For the purpose of mechanical testing of the weld of electric-welded pipe of nominal sizes 2 and larger, the weld extends to a distance of $\frac{1}{2}$ in. (12.7 mm) on either side of the fusion line. For pipe smaller than nominal size 2, the weld extends to a distance of $\frac{1}{4}$ in. (6.35 millimeters) on either side of the fusion line.

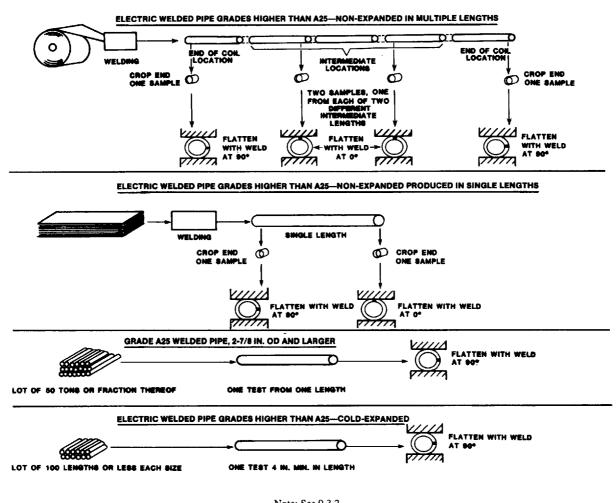
A - RING EXPANSION SPECIMEN

Notes:

1. See 9.3.1.1 for gauge width if testing is not done with properly curved grips.

2. Flattening of transverse and weld specimens shall be performed at room temperature.

3. Hot flattening, artificial aging, or heat treatment of tensile specimens is not permitted.


Figure 4—Tensile Test Specimens

in 9.4.3. Test pressures for all sizes of seamless pipe and for welded pipe in sizes 18 and smaller, shall be held for not less than 5 seconds. Test pressures for welded pipe in sizes 20 and larger shall be held for not less than 10 seconds. For threaded-and-coupled pipe, the test shall be applied with the couplings made up power-tight, if power-tight makeup is specified on the purchase order, except that pipe sizes larger than $12^{3}/_{4}$ may be tested in the plain-end condition. For threaded pipe furnished with couplings made up handlingtight, the hydrostatic test shall be made on the pipe in the plain-end or threads-only condition or with couplings applied, unless otherwise agreed by the purchaser and the manufacturer.

9.4.2 Verification of Hydrostatic Test

In order to ensure that every length of pipe is tested to the required test pressure, each tester (except those on which continuous welded pipe is tested) shall be equipped with a recording gauge that will record the test pressure and duration of time the pressure is applied to each length of pipe, or

Note: See 9.3.2

Figure 5—Flattening Tests

shall be equipped with some positive and automatic or interlocking device to prevent pipe from being classified as tested until the test requirements (pressure and time) have been complied with. Such records or charts shall be available for examination at the manufacturer's facility by the purchaser's inspectors at the manufacturer's facility. The test pressure measuring device shall be calibrated by means of a dead weight tester, or equivalent, within the 4 months prior to each use. Calibration records retention shall be as specified in 12.2.

9.4.3 Test Pressures

The minimum test pressure shall be the standard test pressure or alternate test pressure listed in Tables 4, 5, 6A, 6B, and 6C; an intermediate or higher pressure at the discretion of the manufacturer unless specifically limited by the purchaser; or a higher pressure as agreed between the purchaser and the manufacturer (see Note 1). The minimum test pressures for grades, outside diameters, and wall thicknesses not listed shall be computed by the equation given in Note 2 below. For all sizes of Grade A25 pipe smaller than $5^{9}/_{16}$ and all sizes of Grade A and Grade B pipe smaller than $2^{3}/_{8}$, the test pressure has been arbitrarily assigned. Where the unlisted wall thickness is intermediate to wall thicknesses whose test pressures have been arbitrarily assigned, the test pressure for the intermediate wall thickness shall be equal to the test pressure specified for the next heavier wall thickness. When computed pressures are not an exact multiple of 100 kPa (10 psi), they shall be rounded to the nearest 100 kPa (10 psi).

When the purchase order specifies a hydrostatic test that will produce a hoop stress greater than 90 percent of the specified minimum yield strength and when SR14 (see Appendix F) is specified on the purchase order, the test pressure shall be determined in accordance with SR14 (see Note 3).

Note 1: The hydrostatic test pressures given herein are inspection test pressures, are not intended as a basis for design, and do not necessarily have any direct relationship to working pressures.

Note 2: The test pressures given in Tables 4, 5, 6A, 6B, and 6C were computed by the following equation and rounded to the nearest 100 kPa (10 psi):

US Customary Formula	Metric Formula
$P = \frac{2St}{1}$	$P = \frac{2000St}{1000}$
- D	<i>и – р</i>

Where:

- P = hydrostatic test pressure, psi (kPa).
- S = fiber stress, psi (MPa), equal to a percentage of the specified minimum yield strength for the various sizes as shown in the tabulation below.
- t = specified wall thickness, in. (mm). D = specified outside diameter in. (mm

D = specified outside diameter, in. (mm).

		Percent of Specified Minimum Yield Strength		
Grade	Size Designation	Standard Test Pressure	Alternate Test Pressure	
A25	5 ⁹ / ₁₆ ^a	60	_	
Α	2 ³ / ₈ and larger ^b	60	75	
В	23/8 and largerb	60	75	
X42 thru X80 ^c	5%/16 and smaller	60	75	
	$6^{5}/_{8}$ and $8^{5}/_{8}$	75		
	$10^{3}/_{4}$ to 18 incl.	85	_	
	20 and larger	90	-	

^aTest pressures for other sizes are established arbitrarily.

^bTest pressures were limited to 2,500 psi (17,200 kPa) for sizes $3^{1}/_{2}$ and smaller, and to 2,800 psi (19,300 kPa) for sizes larger than size $3^{1}/_{2}$. Test pressures for other sizes are established arbitrarily.

^cTest pressures for Grades X42 through X80 were limited to 3,000 psi (20,700 kPa) to accommodate hydrostatic tester limitations.

Note 3: When hydrostatic testing in excess of 90 percent of specified minimum yield strength using the equation in Note 2, the applied forces for end sealing produce a compressive longitudinal stress that should be considered.

9.4.4 Supplementary Hydrostatic Tests

By agreement between the purchaser and the manufacturer, for Grades X42 and higher, the manufacturer shall make additional internal pressure tests, which may involve one or more of the following methods. In all supplementary hydrostatic tests, the equation shown in 9.4.3 shall be used for stress calculations. The conditions of testing shall be as agreed upon.

a. Hydrostatic destructive tests in which the minimum length of the specimen is ten times the outside diameter of the pipe, but need not exceed 40 ft.

b. Full-length destructive tests made by the hydrostatic pressure water column method.

c. Hydrostatic transverse yield strength tests using accurate strain gauges (see note).

Note: Acceptable gauges are the roller-chain ring-expansion gauge, the SR4 strain gauge, or other suitable gauges of similar accuracy.

9.5 DIMENSIONAL TESTING

The accuracy of all measuring instruments used for acceptance or rejection, except ring and plug thread gauges and weighing devices, shall be verified at least every operating shift.

Verifying the accuracy of measuring devices such as snap gauges and drift mandrels shall consist of inspection for wear and conformance to specified dimensions. Verifying the accuracy of rules, length measuring tapes, and other nonadjustable measuring devices shall consist of a visual check for legibility of markings and general wear of fixed reference points. The adjustable and nonadjustable designation of measuring devices used by the manufacturer shall be documented.

The verification procedure for working ring and plug thread gauges shall be documented. The accuracy of all weighing devices shall be verified at periods not to exceed those required by the manufacturer's documented procedure in accordance with National Institute of Standards and Technology (NIST) standards or equivalent regulations in the country of manufacture of products made to this specification.

If measuring equipment, whose calibration or verification is required under the provisions of the specification, is subjected to unusual or severe conditions sufficient to make its accuracy questionable, recalibration or reverification shall be performed before using the equipment.

9.6 VISUAL INSPECTION

All pipe shall be visually examined and shall be free of defects in the finished condition.

9.7 NONDESTRUCTIVE INSPECTION

9.7.1 Purchaser Inspection

When inspection by the purchaser is stated on the purchase order, the provisions of Appendix H shall apply.

9.7.2 Methods of Inspection

Except for Grade A25 pipe, the weld seams of welded pipe sizes $2^{3}/_{8}$ and larger shall be inspected full length (100 percent) in accordance with the methods specified below. In addition, the skelp end weld in finished helical seam pipe shall be so inspected. The location of equipment in the manufacturer's facility shall be at the discretion of the manufacturer.

9.7.2.1 Submerged-arc welds shall be inspected by radiological methods in accordance with 9.7.3.1 through 9.7.3.12. Such inspection shall be full length or for a minimum distance of 8 in. (203 mm) from each end if the balance of the weld length is inspected by ultrasonic methods in accordance with 9.7.4.1 through 9.7.4.

9.7.2.2 Electric welds shall be inspected by ultrasonic or electromagnetic methods in accordance with 9.7.4.1 through 9.7.4.4. If necessary to meet the full length (100 percent) inspection requirements of 9.7.2, pipe ends shall be inspected by using hand-held ultrasonic shear wave equipment or other

NDT method agreed to by the manufacturer and the purchaser.

By agreement between the purchaser and the manufacturer and when specified on the purchase order, electric welds shall be nondestructively inspected in accordance with SR17 (see Appendix F).

9.7.2.3 Gas metal-arc welds shall be inspected full length by ultrasonic methods in accordance with 9.7.4.1 through 9.7.4.4. In addition, the welds shall be inspected by radiological methods in accordance with 9.7.3.1 through 9.7.3.12 for a minimum distance of 8 in. (203 mm) from each end.

9.7.2.4 Skelp end welds in finished helical seam pipe shall have been inspected in accordance with one or more of the methods specified above for the weld type. Radiological inspection shall include the junction of the skelp end weld with the helical seam weld. For cold expanded pipe, radiological inspection shall be performed after expansion.

9.7.2.5 By agreement between the purchaser and the manufacturer and when specified on the purchase order, seamless pipe shall be nondestructively inspected in accordance with SR4 (see Appendix F).

9.7.3 Radiological Inspection

9.7.3.1 Radiological Inspection Equipment

The homogeneity of weld seams examined by radiological methods shall be determined by means of X-rays directed through the weld material onto a suitable radiographic film or fluorescent screen or onto a television screen, provided adequate sensitivity can be obtained.

9.7.3.2 Fluoroscopic Operator Qualification

Operators of fluoroscopic equipment shall be trained, tested, and certified by the pipe manufacturer.

Details of such training, teshing, and certification programs shall be available to the purchaser. This program shall include the following:

a. Classroom instruction in the fundamentals of radiological inspection techniques.

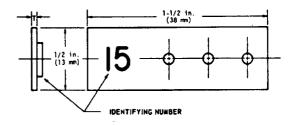
b. On-the-job training designed to familiarize the operator with specific installations, including the appearance and interpretation of weld imperfections and defects. The duration of such training shall be sufficient to assure adequate assimilation of the knowledge required for conducting the inspection. c. Knowledge of the appropriate requirements of this specification.

d. A physical examination at least once per year to determine the operator's optical capability to perform the required inspection. e. Upon completion of Items a and b above, an examination shall be given by the manufacturer to determine if the operator is qualified to properly perform fluoroscopic examinations.

9.7.3.3 Operator Certification

Certified operators whose work has not included fluoroscopic inspection for a period of one year or more shall be recertified by successfully completing the examination (Item e above) and also passing the physical examination (Item d above). Substantial changes in procedure or equipment shall require recertification of the operators.

9.7.3.4 NDT Reference Standards


Unless otherwise specified, the reference standard shall be the API standard penetrameter described in 9.7.3.5, or at the option of the manufacturer the ISO wire penetrameter described in 9.7.3.6. By agreement between the purchaser and the manufacturer, other standard penetrameters may be used.

9.7.3.5 API Standard Penetrameter

The API standard penetrameter shall be as shown in Figure 6 and made of a material with the same radiological characteristics as the pipe. The thickness of the penetrameter shall be a maximum of 4 percent of the specified wall thickness. Either 2 percent or 4 percent penetrameters may be used (see Tables 14 and 15 for sizes).

9.7.3.6 ISO Wire Penetrameter

The ISO wire penetrameter shall be Fe $^{1}/_{7}$, Fe $^{6}/_{12}$, or Fe $^{10}/_{16}$ in accordance with Tables 16 and 17 for the appropriate wall thickness. When the wire penetrameter is placed across the weld, the diameter of the wire employed shall be based

Notes:

1. The diameter of each hole shall be $\frac{1}{16}$ in. (1.6 mm).

2. Holes shall be round and drilled perpendicular to the surface.

3. Holes shall be free of burrs, but edges shall not be chamfered.

4. Each penetrameter shall carry a lead identification number as given in Tables 14 and 15.

Figure 6—API Standard Penetrameter

(1)		(2)		(3)		(4)	
	· · · · ·	hickness		Maximum Penetrameter			
Over		Through	l	Thickn	ess	Identifying	
in.	mm	in.	mm	in.	mm	Number	
³ / ₁₆ or 0.188	(4.8)	$^{1}/_{4}$ or 0.250	(6.4)	0.010	(0.25)	10	
¹ / ₄ or 0.250	(6.4)	$^{3}/_{16}$ or 0.313	(7.9)	0.0125	(0.32)	12	
⁵ / ₁₆ or 0.313	(7.9)	$^{3}/_{8}$ or 0.375	(9.5)	0.015	(0.38)	15	
³ / ₈ or 0.375	(9.5)	⁷ / ₁₆ or 0.438	(11.1)	0.0175	(0.45)	17	
⁷ / ₁₆ or 0.438	(11.1)	$^{1}/_{2}$ or 0.500	(12.7)	0.020	(0.51)	20	
$1/_{2}$ or 0.500	(12.7)	⁵ / ₈ or 0.625	(15.9)	0.025	(0.64)	25	
⁵ / ₈ or 0.625	(15.9)	$^{3}/_{4}$ or 0.750	(19.1)	0.030	(0.76)	30	
$^{3}/_{4}$ or 0.750	(19.1)	1 or 1.000	(25.4)	0.040	(1.02)	40	
1 or 1.000	(25.4)	$1^{1}/_{4}$ or 1.250	(31.8)	0.050	(1.27)	50	
1 ¹ / ₄ or 1.250	(31.8)	1 ¹ / ₂ or 1.500	(38.1)	0.060	(1.52)	60	

in

(1)		(2)		(3)		(4)
Wall Thickness Over		Thickness Through		Maximum – Penetrameter Thickness		Identifying
in.	mm	in.	mm	in.	mm	Number
$^{7}/_{32}$ or 0.219	(5.1)	1/4 or 0.250	(6.4)	0.005	(0.13)	5
$^{1}/_{4}$ or 0.250	(6.4)	⁵ / ₁₆ or 0.313	(7.9)	0.006	(0.15)	6
⁵ / ₁₆ or 0.313	(7. 9)	³ / ₈ or 0.375	(9.5)	0.0075	(0.19)	7
³ / ₈ or 0.375	(9.5)	¹ / ₂ or 0.500	(12.7)	0.010	(0.25)	10
$^{1}/_{2}$ or 0.500	(12.7)	⁵ / ₈ or 0.625	(15.9)	0.0125	(0.32)	12
⁵ / ₈ or 0.625	(15.9)	$^{3}/_{4}$ or 0.750	(19.1)	0.015	(0.38)	15
$^{3}/_{4}$ or 0.750	(19.1)	⁷ / ₈ or 0.875	(22.2)	0.0175	(0.45)	17
⁷ / ₈ or 0.875	(22.2)	1 or 1.000	(25.4)	0.020	(0.51)	20
1 or 1.000	(25.4)	1 ¹ / ₄ or 1.250	(31.8)	0.025	(0.64)	25
$1^{1}/_{4}$ or 1.250	(31.8)	$1^{1}/_{2}$ or 1.500	(38.1)	0.030	(0.76)	30

on the specified wall thickness plus the estimated thickness of the weld reinforcement (not to exceed the maximum allowed) at the penetrameter location. When the penetrameter is placed on the base metal, the diameter of the wire employed shall be based on the specified wall thickness.

(1)

9.7.3.7 Frequency of Calibration

When the fluoroscopic method is used full length and on each film when film is used, the penetrameter shall be used to check the sensitivity and adequacy of the radiographic technique on one pipe in every lot of 50 pipe, but not less than twice per 8-hour working shift. When film is used full length, one penetrameter shall be used for each length of pipe. The pipe shall be held in a stationary position during the adjustment of the radiographic technique by use of the penetrameter. Proper definition and sensitivity is attained when all three holes of the API standard penetrameter or individual wires of the ISO penetrameter are clearly discernible.

11

9.7.3.8 Procedure for Evaluating In-Motion **Operation of a Fluoroscope**

(2)

To evaluate the definition of defects at operational speeds, a pipe section having a minimum wall thickness of 0.375 in. (9.5 mm) shall be used. Series of $\frac{1}{32}$ in. (0.79 mm) holes, as shown in Example 6 of Figure 7 shall be drilled into the center of the weld to a depth of 100 percent of the total thickness. At least four such series shall be used, spaced 1 foot apart. As an alternative to using the pipe section described above, a penetrameter as described in 9.7.3.4, 9.7.3.5, and 9.7.3.6 may be used at the option of the manufacturer. The speed of operation shall be adjusted so that the holes in the pipe section or API penetrameter, or individual wires in the ISO penetrameter, are clearly visible to the operator.

(1)

SPECIFICATION FOR LINE PIPE

(1)

Table 16—ISO Wire 4 Percent Penetrameters

Table 17—ISO Wire 2 Percent Penetrameters

(2)

(3)

(1)	(2)	(3)	(4	4)
		Wall Th	ickness			
	01	Over		ough	Wire Di	ameter
Wire Number	in.	mm	in.	mm	in.	mm
			Fe ¹ / ₇			
1	2.50	(63.5)	3.25	(82.6)	.13	(3.20)
2	2.00	(50.8)	2.50	(63.5)	.10	(2.50)
3	1.62	(41.1)	2.00	(50.8)	.08	(2.00)
4	1.25	(31.8)	1.62	(41.1)	.065	(1.60)
5	1.00	(25.4)	1.25	(31.8)	.050	(1.25)
6	0.80	(20.3)	1.00	(25.4)	.040	(1.00)
7	0.63	(15.9)	0.80	(20.3)	.032	(0.80)
			Fe ⁶ / ₁₂			
6	0.800	(20.3)	1.000	(25.4)	.040	(1.00)
7	0.625	(15.9)	0.800	(20.3)	.032	(0.80)
8	0.500	(12.7)	0.625	(15.9)	.025	(0.63)
9	0.400	(10.2)	0.500	(12.7)	.020	(0.50)
10	0.325	(8.3)	0.400	(10.2)	.016	(0.40)
11	0.250	(6.4)	0.325	(8.3)	.013	(0.32)
12	0.200	(5.1)	0.250	(6.4)	.010	(0.25)
			Fe ^{'10} /16			
10	0.325	(8.3)	0.400	(10.2)	.016	(0.40)
11	0.250	(6.4)	0.325	(8.3)	.013	(0.32)
12	0.200	(5.1)	0.250	(6.4)	.010	(0.25)
13	0.162	(4.1)	0.200	(5.1)	.008	(0.20)
14	0.125	(3.2)	0.162	(4.1)	.006	(0.16)
15	0.100	(2.5)	0.125	(3.2)	.005	(0.13)
16	0.080	(2.0)	0.100	(2.5)	.004	(0.10)
			1			

(1)	(2)	(3)		(4)	
		Wall Thi				
	Over		Thr	ough	Wire Diameter	
Wire Number	in.	mm	in.	mm	in. mm	
		F	e ¹ /7			
1	5.00	(127.0)	6.50	(165.2)	.13	(3.20)
2	4.00	(101.6)	5.00	(127.0)	.10	(2.50)
3	3.25	(82.6)	4.00	(101.6)	.08	(2.00)
4	2.50	(63.5)	3.25	(82.6)	.065	(1.60)
5	2.00	(50.8)	2.50	(63.5)	.050	(1.25)
6	1.60	(40.6)	2.00	(50.8)	.040	(1.00)
7	1.25	(31.8)	1.60	(40.6)	.032	(0.80)
		Fe	⁶ / ₁₂			
6	1.600	(40.6)	2.00	(50.8)	.040	(1.00)
7	1.250	(31.8)	1.60	(40.6)	.032	(0.80)
8	1.000	(25.4)	1.250	(31.8)	.025	(0.63)
9	0.800	(20.3)	1.000	(25.4)	.020	(0.50)
10	0.650	(16.5)	0.800	(20.3)	.016	(0.40)
11	0.500	(12.7)	0.650	(16.5)	.013	(0.32)
12	0.400	(10.1)	0.500	(12.7)	.010	(0.25)
		Fe	¹⁰ / ₁₆			
10	0.625	(16.2)	0.800	(20.3)	.016	(0.40)
11	0.500	(12.7)	0.650	(16.2)	.013	(0.32)
12	0.400	(10.1)	0.500	(12.7)	.010	(0.25)
13	0.325	(8.3)	0.400	(10.1)	.008	(0.20)
14	0.250	(6.4)	0.325	(8.3)	.006	(0.16)
15	0.200	(5.1)	0.250	(6.4)	.005	(0.13)
16	0.160	(4.1)	0.200	(5.1)	.004	(0.10)

9.7.3.9 Acceptance Limits for Radiological Inspection

Radiological examination shall be capable of detecting weld imperfections and defects as described in 9.7.3.10 and 9.7.3.11.

9.7.3.10 Imperfections Observed During Radiological Inspection

The maximum acceptable size and distribution of slag inclusion and/or gas pocket discontinuities are shown in Tables 18 and 19 and Figures 7 and 8 (see note).

The important factors to be considered in determining rejection or acceptance limits are size and spacing of discontinuities and the sum of the diameters in an established distance. For simplicity, the distance is established as any 6 in. (152.4 mm) length. Discontinuities of this type usually occur in an aligned pattern, but no distinction is made between aligned or scattered patterns. Also, the distribution pattern may be of assorted sizes. Note: Unless the discontinuities are elongated, it cannot be determined with assurance whether the radiological indications represent slag inclusions or gas pockets. Therefore, the same limits apply to all circular-type discontinuities.

9.7.3.11 Defects Observed During Radiological Inspection

Cracks, lack of complete penetration or of complete fusion, and discontinuities greater in size and/or distribution than shown in Tables 18 and 19 and Figures 7 and 8, as indicated by radiological examination, shall be considered defects. See 9.7.5.4 for disposition of pipe containing defects.

9.7.3.12 Disposition of Defects Observed During Radiological Inspection

Any weld defect detected as a result of radiological examination shall be rejected. Disposition of the pipe containing the defect shall be in accordance with 9.7.5.4.

((1)	(2)		(2)		(3)
Maximum Dimensions		Minimum Separation		Maximum Number in any		
in.	mm	in.	mm	6 in. (152.4 mm)		
$1/_{16} \times 1/_{2}$	(1.6 × 12.7)	6	(152.4)	1		
$1/_{16} \times 1/_{4}$	(1.6×6.4)	3	(76.2)	2		
$1/_{16} \times 1/_{8}$	(1.6×3.2)	2	(50.8)	3		

Table 18—Elongated Slag-Inclusion-Type Discontinuities^a

Note: See Figure 8.

^aMaximum accumulated length of discontinuities in any 6 in. (152.4 mm) shall not exceed ¹/₂ in. (12.7 mm).

Table 19—Circular Slag-Inclusion and Gas-Pocket-Type Discontinuities^a

C	1)	((2)		3)	(4) •
Si	ze	Adjac	ent Size	Minimum Separation Maximur		Maximum Number in any
in.	mm	in.	mm	in.	mm	6 in. (152.4 mm)
1/8 p	(3.2)	1/8p	(3.2)	2	(50.8)	2
1/8p	(3.2)	1/ ₁₆	(1.6)	1	(25.4)	Varies
¹ / ₈ ^b	(3.2)	1/ ₃₂	(0.8)	1/2	(12.7)	Varies
1/8 b	(3.2)	1/ ₆₄	(0.4)	3/8	(9.5)	Varies
1/ ₁₆	(1.6)	1/16	(1.6)	1/2	(12.7)	4
1/ ₁₆	(1.6)	1/ ₃₂	(0.8)	³ / ₈	(9.5)	Varies
1/ ₁₆	(1.6)	1/64	(0.4)	1/4	(6.4)	Varies
1/ ₃₂	(0.8)	1/32	(0.8)	1/4 c	(6.4)	8
1/32	(0.8)	1/64	(0.4)	3/ ₁₆	(4.8)	Varies
1/ ₆₄	(0.4)	¹ / ₆₄	(0.4)	1/8	(3.2)	16

Note: See Figure 7.

^aThe sum of the diameters of all discontinuities in any 6 in. (152.4 mm) not to exceed $\frac{1}{4}$ in. (6.4 mm).

^bMaximum size discontinuity for 0.250 in. (6.4 mm) wall and lighter shall be ³/₃₂ in. (2.4 mm).

^cTwo discontinuities ¹/₃₂ in. (0.8 mm) or smaller may be as close as one diameter apart provided they are

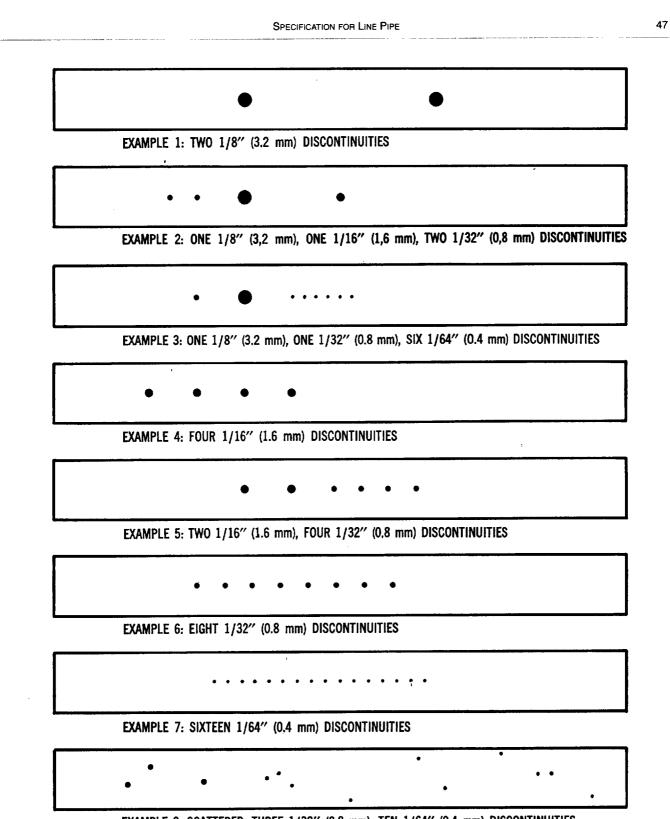
separated from any other discontinuity by at least $\frac{1}{2}$ in. (12.7 mm).

9.7.4 Ultrasonic and Electromagnetic Inspection

9.7.4.1 Equipment

Any equipment utilizing the ultrasonic or electromagnetic principles and capable of continuous and uninterrupted inspection of the weld seam shall be used. The equipment shall be checked with an applicable reference standard as described in 9.7.4.2 at least once every working shift to demonstrate its effectiveness and the inspection procedures. The equipment shall be adjusted to produce well-defined indications when the reference standard used by the manufacturer is scanned by the inspection unit in a manner simulating the inspection of the product and shall be capable of inspecting $1/_{16}$ in. (1.6 mm) on either side of the weld line for the entire wall thickness.

9.7.4.2 NDT Reference Standards


Reference standards shall have the same specified diameter and thickness as the product being inspected and may be of any convenient length as determined by the manufacturer. Reference standards shall contain machined notches, one on the inside surface and one on the outside surface, or a drilled hole as shown in Figure 9, at the option of the manufacturer. The notches shall be parallel to the weld seam and shall be separated by a distance sufficient to produce two separate and distinguishable signals. The $1/_{16}$ -in. (1.6-mm) or $1/_{8}$ -in. (3.2-mm) hole shall be drilled through the wall and perpendicular to the surface of the reference standard as shown in Figure 9 (see note).

Note: The reference standards defined above are convenient standards for calibration of nondestructive testing equipment. The dimensions of these standards should not be construed as the minimum size imperfection detectable by such equipment.

9.7.4.3 Acceptance Limits

Table 20 gives the height of acceptance limit signals produced by reference standards. An imperfection that produces a signal greater than the acceptance limit signal given in Table 20 shall be considered a defect unless it can be demonstrated by the manufacturer that the imperfection does not

API SPEC*5L 95 📰 0732290 0541191 082 📰

EXAMPLE 8: SCATTERED, THREE 1/32" (0.8 mm), TEN 1/64" (0.4 mm) DISCONTINUITIES

Figure 7—Examples of Maximum Distribution Patterns of Indicated Circular Slag-Inclusion and Gas-Pocket-Type Discontinuities

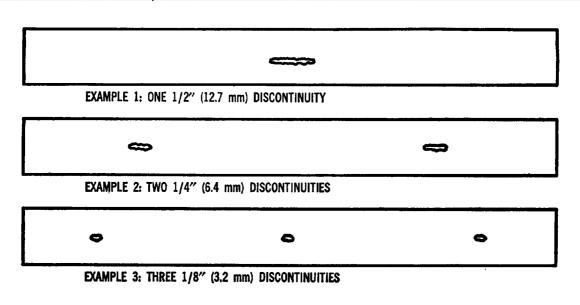


Figure 8—Examples of Maximum Distribution Patterns of Indicated Elongated Slag-Inclusive-Type Discontinuities

exceed the provisions of 7.8. Alternatively, indicated imperfections in submerged-arc welds may be reinspected by film radiological methods using 2 percent penetrameters in accordance with 9.7.3.1 through 9.7.3.12.

In addition, for gas metal-arc welds, continuous flaw signals greater than 1 in. in length, regardless of signal height, but greater than the background signal (noise) shall be reinspected by radiological methods using 2 percent penetrameters in accordance with 9.7.3.1 through 9.7.3.12 or by other techniques as agreed upon between the purchaser and the manufacturer.

9.7.4.4 Weld Repair

Defects in the weld found by ultrasonic or electromagnetic methods of inspection may be repaired by welding then reexamined nondestructively in accordance with Appendix B.

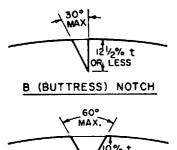
Table 20—Acceptance Limits

(1)	(2)	. (3)	(4)	
		Size	Acceptance Limit Signal		
Weld Type	Notch Type	in.	mm	(percent)	
Submerged-arc,					
gas-metal arc	N5	1/ ₁₆	(1.6)	100	
and repair welds	All other	۱ _{/8}	(3.2)	33 ¹ / ₃	
Electric weld	N10, V10	1/8	(3.2)	100	
	B. P	_	_	80	

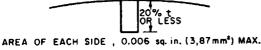
9.7.4.5 Reinspection of Pipe Ends

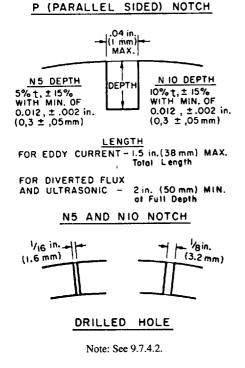
For cold expanded welded pipe nondestructively inspected only prior to cold expansion, the weld at each end of each length shall be nondestructively reinspected subsequent to cold expansion for a distance of at least 6 in. (152.4 mm) by any of the methods specified in 9.7.2 or by the magnetic particle method in accordance with 9.7.5.1 through 9.7.5.3.

9.7.5 Magnetic Particle Inspection (See Note)


Note: For pipe ends per 9.7.4.5 and for weld repairs to the pipe body.

9.7.5.1 Equipment


The equipment used for magnetic particle inspection shall produce a magnetic field, transverse to the weld, of sufficient intensity to indicate weld area defects of the following character in the external surface of the pipe: open welds, partial or incomplete welds, intermittent welds, cracks, seams, and slivers.


9.7.5.2 Reference Standard

If requested by the purchaser, arrangements shall be made by the manufacturer to perform a demonstration for the purchaser or his representative during production of his order. Such demonstration shall be based on pipe in process or sample lengths of similar pipe retained by the manufacturer for that purpose that exhibit natural or artificially produced defects of the character stated in 9.7.5.1.

9.7.5.3 Acceptance Limits

The manufacturer shall mark each magnetic particle indication and subsequently explore each indication with respect to the depth of the imperfection. Imperfections that require grinding or chipping to determine their depth shall be completely removed by grinding, or by cutting off, or may be repaired by welding in accordance with Appendix B and reexamined nondestructively.

9.7.5.4 Disposition of Defects

Pipe containing a defect must be given one of the following dispositions: a. The defect shall be removed by grinding provided the remaining wall thickness is within specified limits. Grinding shall be done in a workmanlike manner.

b. The defect shall be repaired by welding in accordance with Appendix B.

c. The section of pipe containing the defect shall be cut off within the limits of requirements on length.

d. The entire pipe shall be rejected.

9.8 TEST METHODS

9.8.1 Methods of Chemical Analysis

Methods and practices relating to chemical analysis shall be performed in accordance with ASTM A 751, *Methods*, *Practices, and Definitions for Chemical Analysis of Steel Products.* Calibrations performed shall be traceable to established standards.

9.8.1.1 Test Method

The tensile testing procedure shall conform to the requirements of the latest edition of ASTM A 370, *Mechanical Testing of Steel Products*, Annex II—Steel Tubular Products. All tensile tests, except transverse weld and ring tests, shall include yield strength, ultimate tensile strength, and elongation determinations and shall be performed with the specimens at room temperature. The strain rate shall be in accordance with the requirements of ASTM A 370.

9.8.1.2 Equipment

Tensile test machines shall have been calibrated within 15 months preceding any test in accordance with the procedures of ASTM E 4, *Practices for Load Verification of Testing Machines*. Where yield strength is determined by using extensometers, such extensometers shall be calibrated within the preceding 15 months in accordance with the procedures of ASTM E 83, *Method of Verification and Classification of Extensometers*.

9.8.2 Guided-Bend Test

One face-bend and one root-bend specimen, both conforming to Figure 10, shall be bent approximately 180 degrees in a jig substantially in accordance with Figure 11. For any combination of outside diameter, wall thickness, and grade, the maximum value for jig dimension A in Figure 11 may be calculated using the equation shown. The manufacturer shall use a jig based on this dimension or a smaller dimension at his option; however, to minimize the number of jigs required, standard values for dimension A have been selected for pipe sizes $12^{3}/_{4}$ and larger. These values are listed for each diameter, wall thickness, and grade in Appendix G. For intermediate grades or wall thicknesses, the next smaller standard value for dimension A shall be used. When dimension A is greater than 9 in. (228.6 mm), the length of the

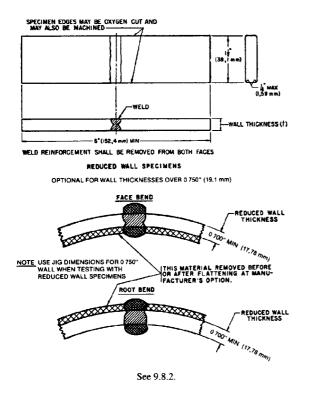
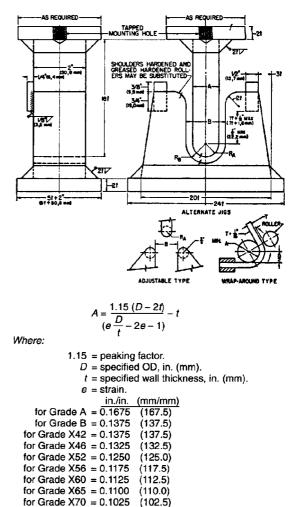


Figure 10—Guided-Bend Test Specimen


specimen required to contact the male die need not exceed 9 in. (228.6 mm). For pipe with wall thicknesses over 0.750 in. (19.1 mm), a reduced wall specimen as shown in Figure 10 may be used at the option of the manufacturer. Reduced wall specimens shall be tested in a jig with the A dimension calculated for 0.750 in. (19.1 mm) wall pipe of the appropriate size and grade. The specimens (a) shall not fracture completely; (b) shall not reveal any cracks or ruptures in the weld metal greater than $1/_8$ in. (3.18 mm) in length regardless of depth; and (c) shall not reveal any cracks or ruptures in the parent metal, heat affected zone, or fusion line longer than $1/_8$ in. (3.18 mm) and deeper than $12^{1}/_2$ percent of the specified wall thickness, except cracks that occur at the edges of the specimen and that are less than $1/_4$ in. (6.35 mm)

Tong shall not be cause for rejection in (b) or (c) above regardless of depth.

9.9 INVALIDATION OF TESTS

9.9.1 Defective Tensile Test Specimens

When the elongation of any tensile test specimen is less than that specified and if any part of the fracture is outside the middle third of the gauge length as indicated by scribe

ade X80 = 0.0900 (90.0)

$$R_A = \frac{1}{2}A$$

 $B = A + 2t + \frac{1}{8}$ in. (A + 2t + 3.2 mm)
 $R_B = \frac{1}{2}B$

for Gr

Note: See 9.8.2.

scratches marked on the specimen before testing, a retest shall be allowed.

9.9.2 Defective Mechanical Test Specimens

For any of the mechanical tests in Section 6, any test specimen that shows defective preparation or material imperfections unrelated to the intent of the particular mechanical test, whether observed before or after testing, may be discarded and replaced by another specimen from the same length of pipe.

9.10 RETESTS

9.10.1 Recheck Analyses

If the product analyses of both samples representing the heat fail to conform to the specified requirements, at the manufacturer's option either the heat shall be rejected or the remainder of the heat shall be tested individually for conformance to the specified requirements. If the product analysis of only one of the samples representing the heat fails to conform to the specified requirements, at the manufacturer's option either the heat shall be rejected or two recheck analyses shall be made using two additional samples from the heat. If both recheck analyses conform to the specified requirements, the heat shall be accepted, except for the pipe, plate, or skelp from which the initial sample that failed was taken. If one or both recheck analyses fail to conform to the specified requirements, at the manufacturer's option either the heat shall be rejected or the remainder of the heat shall be tested individually for conformance to the specified requirements.

For such individual testing, analyses for only the rejecting element or elements need be determined.

Samples for recheck analyses shall be taken in the same location as specified for product analysis samples.

9.10.2 Tensile Retest

If the tensile test specimen representing a lot of pipe fails to conform to the specified requirements, the manufacturer may elect to retest two additional lengths from the same lot. If both retested specimens conform to the requirements, all the lengths in a lot shall be accepted, except the length from which the initial specimen was taken. If one or both of the retested specimens fail to conform to the specified requirements, the manufacturer may elect to individually test the remaining lengths in the lot, in which case determinations are required only for the particular requirements with which the specimens failed to comply in the preceding tests. Specimens for retest shall be taken in the same manner as the specimen that failed to meet the minimum requirements.

9.10.3 Flattening Retest

Flattening retest provisions are as follows:

a. Nonexpanded electric-welded pipe produced in single lengths in grades higher than A25-The manufacturer may elect to retest any failed end until the requirements are met, providing the finished pipe is not less than 80 percent of its length after initial cropping.

b. Nonexpanded electric-welded pipe produced in multiple lengths in grades higher than A25-The manufacturer may elect to retest each end of each individual length if any test fails. The retests for each end of each individual length shall be made with the weld alternately at 0 degrees and 90 degrees.

c. Cold-expanded electric-welded pipe in grades higher than

A25 and all welded Grade A25 sizes $2^{7}/_{8}$ and larger—The manufacturer may elect to retest one end from each of two additional lengths of the same lot. If both retests are acceptable, all lengths in the lot shall be accepted, except the original failed length. If one or both retests fail, the manufacturer may elect to repeat the test on specimens cut from one end of each of the remaining individual lengths in the lot.

9.10.4 Bend Retest

If the specimen fails to conform to the specified requirements, the manufacturer may elect to make retests on specimens cut from two additional lengths from the same lot. If all retest specimens conform to the specified requirements, all lengths in the lot shall be accepted, except the length from which the initial specimen was taken. If one or more of the retest specimens fail to conform to the specified requirements, the manufacturer may elect to repeat the test on specimens cut from the individual lengths remaining in the lot.

9.10.5 Guided-Bend Retest

If one or both of the guided-bend specimens fail to conform to the specified requirements, the manufacturer may elect to repeat the tests on specimens cut from two additional lengths of pipe from the same lot. If such specimens conform to the specified requirements, all lengths in the lot shall be accepted, except the length initially selected for test. If any of the retested specimens fail to pass the specified requirements, the manufacturer may elect to test specimens cut from the individual lengths remaining in the lot. The manufacturer may also elect to retest any length that has failed to pass the test by cropping back and cutting two additional specimens from the same end. If the requirements of the original test are met by both of these additional tests, that length shall be acceptable. No further cropping and retesting is permitted. Specimens for retests shall be taken in the same manner as specified in 9.8.3.

9.10.6 Weld Ductility Retest

If the weld ductility test specimen representing a lot of pipe fails to conform to the requirements of 6.2.5, the manufacturer may elect to retest two additional lengths from the same lot. If both retested specimens conform to the requirements, all the lengths in the lot shall be accepted, except the length from which the initial specimen was taken. If one or both of the retested specimens fail to conform to the specified requirements, the manufacturer may elect to test specimens cut from one end of the individual lengths remaining in the lot. Precaution shall be taken so that the specimens can be identified with the length of pipe from which they were cut. The manufacturer may also elect to retest any length that has failed to pass the above test procedure by

cropping back and cutting two additional specimens from the same end. If the weld ductility test requirements are met by both of these additional tests, that length shall be acceptable. No further cropping and retesting is permitted.

10 Marking

10.1 GENERAL

Pipe and pipe couplings manufactured in conformance with this specification shall be marked by the manufacturer as specified herein (see note).

Note: Users of this specification should note that there is no longer a requirement for marking a product with the API monogram. API continues to license use of the monogram on products covered by this specification, but it is administered by the staff of the Institute separately from the specification. The policy describing use of the monogram is contained in Appendix I. No other use of the monogram is permitted. Licensees may mark products in conformance with Section 10 or Appendix I, and nonlicensees may mark products in conformance with Section 10.

10.1.1 The required marking on pipe shall be as specified hereinafter.

10.1.2 The required marking on couplings shall be die stamped unless otherwise agreed between the purchaser and the manufacturer, in which case it shall be paint stenciled.

10.1.3 Length and hydrostatic test pressure markings should be in U.S. customary units. These markings shall be in SI units or both U.S. customary and SI units if so specified on the purchase order. If not so specified, pipe made and intended for use in countries using the metric system may be marked in SI units only, at the option of the manufacturer.

10.1.4 Additional markings including those for compatible standards following the specification marking are allowed and may be applied as desired by the manufacturer or as requested by the purchaser.

10.2 LOCATION OF MARKINGS

The location of identification markings shall be as follows: a. Sizes $1^{1}/_{2}$ and smaller—Die stamped on a metal tag fixed to the bundle or may be printed on the straps or banding clips used to tie the bundle.

b. Seamless pipe in all other sizes and welded pipe up to size 16—Paint stenciled on the outside surface starting at a point between 18 in. and 30 in. (457.2 mm and 762 mm) from the end of the pipe in the sequence shown in 10.3, except when agreed between the purchaser and the manufacturer some or all of the markings may be placed on the inside surface in a sequence convenient to the manufacturer.

c. Welded pipe size 16 and larger—Paint stenciled on the inside surface starting at a point no less than 6 in. (152.4 mm) from the end of the pipe in a sequence convenient to the manufacturer, unless otherwise specified by the purchaser.

10.3 SEQUENCE OF MARKINGS

The sequence of identification markings shall be as as specified in 10.3.1–10.3.9.

10.3.1 Manufacturer

Manufacturer's name or mark shall be the first identifying mark.

10.3.2 Specification

"Spec 5L" shall be marked when the product is in complete compliance with this specification.

10.3.3 Compatible Standards

Products in compliance with multiple compatible standards may be marked with the name of each standard.

10.3.4 Designation

The size and weight designations are dimensionless quantities based on the former U.S. customary unit diameter and weight per foot. The size designation (column 4, Tables 4, 5, 6A, 6B, and 6C) or the applicable intermediate outside diameter shall be marked.

For sizes $4^{1}/_{2}$ and larger, the nominal weight for threadedand-coupled pipe (column 2, Tables 4 and 5), the tabulated weight for plain-end pipe (in column 4, Tables 6A, 6B, and 6C), or the applicable calculated weight for pipe having an intermediate outside diameter and/or wall thickness shall be marked.

10.3.5 Grade and Class

The symbols to be used are as follows:

Grade (See Note)	Symbol
Grade A25, Class I	A25
Grade A25, Class II	A25R
Grade A	Α
Grade B	В
Grade X42	X42
Grade X46	X46
Grade X52	X52
Grade X56	X56
Grade X60	X6 0
Grade X65	X65
Grade X70	X70
Grade X80	X80

For grades intermediate to X42 and X80, the symbol shall be X followed by the first two digits of the specified minimum yield strength.

By agreement between the purchaser and the manufacturer and when so specified on the purchase order, the grade shall be identified by color in accordance with SR3 (see Appendix F).

Note: See 1.3 for limitations on downgrading.

10.3.6 Process of Manufacture

The symbols to be used are as follows:

a.	Seamless pipe	S
b.	Welded pipe, except continuous welded	Ε
c.	Continuous welded pipe	F

10.3.7 Heat Treatment

The symbols to be used are as follows:

a.	Normalized or normalized and tempered	HN
b.	Subcritical stress relieved	HS
c.	Subcritical age hardened	HA
d.	Quenched and tempered	HQ

10.3.8 Test Pressure

When the specified hydrostatic test pressure is higher than the tabulated pressure (Tables 4, 5, 6A, 6B, and 6C), the word "TESTED" shall be marked followed by the test pressure in pounds per square inch.

10.3.9 Supplementary Requirements

See Appendix F for supplimentary requirements.

10.3.10 Examples

1. Size 14, weight 54.57, Grade B, seamless, regular-weight, plain-end pipe should be paint stenciled as follows:

AB CO Spec 5L 14 54.57 B S

2. Size $6^{5}/_{8}$, weight 18.97, Grade B, electric-welded, regular-weight, plain-end pipe should be paint stenciled as follows:

```
AB CO Spec 5L 6<sup>5</sup>/<sub>8</sub> 18.97 B E
```

3. Nominal size 4, Grade A25 continuous welded, Class 1, standard-weight, threaded-line pipe should be paint stenciled as follows:

AB CO Spec 5L 4 11.00 A25 F Spec 5B 4 LP

4. Size 14, weight 54.57, Grade X70, seamless, quenched and tempered steel pipe should be paint stenciled as follows:

AB CO Spec 5L 14 54.57 X70 S HQ

5. Size $12^{3}/_{4}$, weight 43.77, Grade X42, seamless plain-end pipe should be paint stenciled as follows:

AB CO Spec 5L 12³/₄ 43.77 X42 S

6. Size $6^{5}/_{8}$, weight 14.97, Grade X42, electric-welded plain-end pipe should be paint stenciled as follows:

AB CO Spec 5L 6⁵/₈ 14.97 X42 E

7. Size $12^{3}/_{4}$, weight 43.77, Grade X42, helical seam submerged-arc welded plain-end pipe should be paint stenciled as follows:

AB CO Spec 5L 12³/₄ 43.77 X42 E

10.4 BUNDLE IDENTIFICATION

For pipe sizes $1^{1}/_{2}$ and smaller, the identification markings specified in 10.3 shall be placed on the tag, strap, or clip used to tie the bundle. For example, size $1^{1}/_{2}$, weight 2.72, Grade B, electric-welded, plain-end pipe should have the following marking:

10.5 LENGTH

In addition to the identification markings stipulated in 10.2, 10.3, and 10.4, the length shall be marked as follows:

a. For pipe sizes larger than $1^{1}/_{2}$, the length in feet and tenths of a foot (unless otherwise specified on the purchase order) as measured on the finished pipe, shall be paint stenciled on the outside surface at a location convenient to the manufacturer, except by agreement between the purchaser and the manufacturer, the length marking may be placed inside the pipe at a convenient location.

b. For pipe sizes $1^{1}/_{2}$ and smaller, the total length of pipe in the bundle in feet and tenths of a foot, unless otherwise specified on the purchase order, shall be marked on the tag, band, or clip.

10.6 COUPLINGS

All couplings in nominal sizes 2 and larger shall be identified with the manufacturer's name or mark and "Spec 5L."

10.7 DIE STAMPING

Cold-die stamping of grades higher than A25 plate or pipe not subsequently heat treated and all pipe with wall thicknesses of 0.156 in. (4.0 mm) and less is prohibited, except by agreement between the purchaser and the manufacturer and when so specified on the purchase order, pipe or plate may be cold-die stamped. The manufacturer at his option may hot-die stamp [200°F (93°C) or higher] plate or pipe, cold-die stamp plate or pipe if it is subsequently heat treated, and cold-die stamp couplings. Cold-die stamping shall be 54

API SPECIFICATION 5L

done with rounded or blunt dies. All die stamping shall be at least 1 in. (25.4 mm) from the weld for all grades except Grade A25.

10.8 THREAD IDENTIFICATION

At the manufacturer's option, any pipe threads that conform to the threading and gauging stipulations given in API Standard 5B may be identified by stamping or stenciling the product adjacent to threads, with the manufacturer's name or mark, the size, and the letters "LP" to indicate the type of thread. The thread marking may be applied to products that do or do not bear the API monogram. For example, nominal size 6 API line pipe threads may be marked as follows:

AB CO Spec 5B 6 LP

If the product is clearly marked elsewhere with the manufacturer's identification, his name or mark, as above, may be omitted.

10.9 THREAD CERTIFICATION

The use of the letters "Spec 5B" as provided in 10.8 shall constitute a certification by the manufacturer that the threads so marked comply with the requirements in API Standard 5B but should not be construed by the purchaser as a representation that the product so marked is, in its entirety, in accordance with any API specification. Manufacturers who use the letters "Spec 5B" for thread identification must have access to properly certified API master pipe gauges.

10.10 PIPE PROCESSOR MARKINGS

Pipe heat treated by a processor other than the original pipe manufacturer shall be marked as stipulated in 10.1, 10.2, 10.3, 10.4, 10.5, 10.6, and 10.7. The processor shall remove any marking that does not indicate the new condition of the product as a result of heat treating (such as prior grade identity and original pipe manufacturer's name or logo).

11 Coating and Protection

11.1 COATINGS

Unless otherwise ordered, pipe shall be given an external coating to protect it from rusting in transit. An attempt should be made to make these coatings smooth, hard to the touch, and with minimum sags. If bare pipe or specially coated pipe is desired, the purchase order should so state. For special coatings, the purchase order should state further whether the coating is to be applied to the full length or whether a certain specified distance from the end is to be left uncoated. Unless otherwise specified, such bare ends are commonly given a coating with oil for protection in transit.

11.2 THREAD PROTECTORS

On nominal pipe sizes smaller than 2, the thread protectors shall be suitable fabric wrappings or suitable metal, fiber, or plastic protectors. On nominal pipe sizes 2 and larger, the thread protectors shall be of such design, material, and mechanical strength to protect the thread and the end of the pipe from damage under normal handling and transportation conditions. The thread protectors shall cover the full length of the thread on the pipe and exclude water and dirt from the thread during transportation and the period of normal storage. The normal storage period shall be considered approximately one year. The thread forms in protectors shall be such that the pipe threads are not damaged by the protectors. Protector material shall contain no compounds capable of causing corrosion or promoting adherence of the protectors to the threads and shall be suitable for service temperatures of -50° F to $+150^{\circ}$ F (-46° C to $+66^{\circ}$ C).

12 Documents

12.1 CERTIFICATION

The manufacturer shall, upon request by the purchaser, furnish to the purchaser a certificate of compliance stating that the material has been manufactured, sampled, tested, and inspected in accordance with this specification and has been found to meet the requirements.

Where additional information is required, including the results of mechanical testing, SR15 shall be specified on the purchase order (see Appendix F).

12.2 RETENTION OF RECORDS

Tests and inspections requiring retention of records in this specification are shown in Table 21. Such records shall be retained by the manufacturer and shall be made available to the purchaser upon request for a period of three years after the date of purchase from the manufacturer.

SPECIFICATION FOR LINE PIPE

Requirement	Reference					
Chemical properties						
Heat analysis	Paragraph 9.2.1					
Product analysis	Paragraph 9.2.2					
Mechanical tests	•••					
Tensile tests	Paragraph 9.3.1					
Weld tensile tests	Paragraph 9.3.1.5					
Mill control tests	Paragraph 9.3.1.6					
Guided bend tests	Paragraph 9.3.4					
Fracture toughness tests	Paragraph 6.2.6, SR5, SR6					
Hydrostatic tests						
Tester recorder charts (where used)	Paragraph 9.4.2					
Supplementary hydrostatic tests	Paragraph 9.4.4					
Nondestructive inspection						
Film (where used)	Paragraph 9.7.2					
Fluoroscopic	•					
Operator qualifications	Paragraph 9.7.3.2					
Welded jointers						
Film	Paragraph A.4					
Repair welding procedure						
Transverse tensile test	Paragraph C.2.2.2					
Longitudinal tensile-elongation test	Paragraph C.2.2.3					
Transverse guided bend test	Paragraph C.2.2.4					
Nick break test	Paragraph C.2.2.5					

Table 21—Retention of Records

55

APPENDIX A—SPECIFICATION FOR WELDED JOINTERS (NORMATIVE)

A.1 Method

Welding of any type that uses deposited filler metal and is generally recognized as sound practice shall be permitted unless the purchaser specifies a particular method. Welding procedures and welders and welding machine operators (hereafter called operators) shall be qualified in accordance with API Standard 1104. Copies of the welding procedure specification and procedure qualification record shall be provided to the purchaser upon request.

A.2 Workmanship

The ends of the pipe to be welded together shall be prepared in accordance with the requirements of the procedure to be used. Pipe weld seams (straight, helical, or skelp) shall be staggered between 2 in. and 8 in. (51 mm and 203 mm) unless otherwise specified by the purchaser. The completed jointers shall be straight within the limits of 7.6 of this specification. Each weld shall have a substantially uniform cross section around the entire circumference of the pipe. At no point shall its crowned surface be below the outside surface of the parent metal nor shall it rise above the parent metal by more than 1/8 in. (3.18 mm) if submerged-arc welded, or by more than 1/16 in. (1.59 mm), if welded by another process.

A.3 Marking

Each jointer shall be marked using paint stencil to identify the welder or operator.

A.4 Nondestructive Testing

The girth welds of jointers shall be 100 percent radiographed in accordance with the procedures and standards of acceptability in API Standard 1104 (see note). Jointer welds failing to pass this radiographic examination may be repaired and re-radiographed in accordance with the procedures and acceptance criteria of API Standard 1104.

Note: See 7.7 for length requirements on jointers.

APPENDIX B-REPAIR OF DEFECTS BY WELDING (NORMATIVE)

B.1 Types of Pipe

B.1.1 SEAMLESS PIPE AND PARENT METAL OF WELDED PIPE

The repair of defects in seamless pipe and parent metal of welded pipe is permissible except (a) when the depth of the defect exceeds $33^{1}/_{3}$ percent of the specified wall thickness of the pipe and the length of that portion of the defect in which the depth exceeds $12^{1}/_{2}$ percent is greater than 25 percent of the specified outside diameter of the pipe; or (b) when more than one repair is required in any length equivalent to 10 times the specified outside diameter of the pipe. Repairs shall be made in accordance with B.2. Repair welds shall be inspected by the magnetic particle method in accordance with 9.7.5.1 through 9.7.5.3, by liquid penetrant, or by other NDT methods as agreed between purchaser and manufacturer.

B.1.2 WELD SEAM OF WELDED PIPE

Defects in filler metal welds may be repaired at the option of the manufacturer; such repairs shall be in accordance with B.3. Electric welds may be repaired only by agreement between the purchaser and the manufacturer; such repairs shall be in accordance with B.4. Repair welds shall be inspected by ultrasonic methods in accordance with 9.7.4.1 through 9.7.4.3, except that the equipment need not be capable of continuous and uninterrupted operation and, at the option of the manufacturer, repairs made by submerged-arc welding or by shielded metal-arc welding may alternatively be inspected by radiological methods in 9.7.3.

B.1.3 HEAT TREATED PIPE

When heat treated pipe has been repaired by welding, the need for and type of reheat treatment shall be based on the effect of the repair on the structure and properties of the heat treated pipe, by agreement between the manufacturer and the purchaser.

B.2 Procedure for Repair by Welding of Seamless Pipe and Parent Metal of Welded Pipe

The repair of defects in seamless pipe and parent metal of welded pipe shall conform to the requirements listed in B.2.1–B.2.5. Conformance to the repair procedure is subject to approval of the purchaser's inspector.

B.2.1 The defect shall be removed completely by chipping and/or grinding. The resulting cavity shall be thoroughly cleaned and shall be inspected before welding by magnetic particle methods to ensure complete removal of the defect.

B.2.2 The minimum length of repair weld shall be 2 in. (50.8 mm). Where the orientation of the defect permits, the repair weld shall be placed in the circumferential direction.

B.2.3 The repair weld shall be made either by automatic submerged-arc welding, gas metal-arc welding, or manually shielded metal-arc welding using low-hydrogen electrodes. The metal temperature in the area to be repaired shall be a minimum of 50° F (10° C). The welding procedure and performance shall be qualified in accordance with Appendix C.

B.2.4 The repair weld shall be ground to merge smoothly into the original contour of the pipe.

B.2.5 Repaired pipe shall be tested hydrostatically after repairing in accordance with 9.4.

B.3 Procedure for Repair of Submerged-Arc and Gas Metal-Arc Welds

The repair of submerged-arc and gas metal-arc welds shall conform to the requirements listed in B.3.1–B.3.3. Conformance is subject to approval of purchaser's inspector.

B.3.1 The defect shall be completely removed and the cavity thoroughly cleaned. Where multiple pass repairs are used, the size of the cavity must be sufficiently large [at least 2 in. (50.8 mm) in length] to avoid coincidence of starts and stops of individual passes.

B.3.2 The minimum length of each repair weld shall be 2 in. (50.8 mm). The repair weld shall be made either by automatic submerged-arc welding, gas metal-arc welding, or manual shielded metal-arc welding using low-hydrogen electrodes. The welding procedure and performance shall be qualified in accordance with Appendix C.

B.3.3 Each length of repaired pipe shall be tested hydrostatically in accordance with 9.4.

B.4 Procedure for Repair of Electric Welds

The repair of electric welds shall conform to the requirements in B.4.1–B.4.6 and shall include the weld zone, which is defined for the purposes of repair as 1/2 in. (12.7 mm) on

60

either side of the fusion line. Conformance to the repair procedure is subject to approval of the purchaser's inspector.

B.4.1 The weld zone defect shall be removed completely by chipping and/or grinding, and the resulting cavity shall be thoroughly cleaned.

B.4.2 The minimum length of repair weld shall be 2 in. (50.8 mm), and individual weld repairs must be separated by at least 10 ft (3 m).

B.4.3 The repair weld shall be made either by automatic submerged-arc welding, gas metal-arc welding, or manual shielded metal-arc welding using low-hydrogen electrodes. The metal temperature in the area to be repaired shall be a

minimum of $5^{\circ}F(10^{\circ}C)$. The welding procedure and performance shall be qualified in accordance with Appendix C.

B.4.4 When a repair weld is made through the full wall thickness, it shall include weld passes made from both the ID and the OD of the pipe. Starts and stops of the ID and OD repair welds shall not coincide.

B.4.5 The repair shall be ground to merge smoothly into the original contour of the pipe and shall have a maximum crown of 0.06 in. (1.52 mm).

B.4.6 Repaired pipe shall be hydrostatically tested after repair in accordance with 9.4.

APPENDIX C—REPAIR WELDING PROCEDURE (NORMATIVE)

C.1 General

All repair welds shall be made in the flat position according to a qualified procedure and by a welding machine operator (hereafter called operator) or repair welder who is qualified in a flat position as specified in C.2. Repair welds may be made by one of the following methods:

- a. Automatic submerged arc.
- b. Automatic or semi-automatic gas metal arc.

c. Manual shielded metal arc using low-hydrogen electrodes.

All welding materials shall be properly handled and stored in accordance with the manufacturer's recommendations so as to preclude moisture or other contamination. Test welds may be made on either plate stock or pipe stock at the option of the manufacturer.

The manufacturer shall maintain a record of the welding procedure and procedure qualification test results. Copies of the welding procedure specification and procedure qualification record shall be provided to the purchaser upon request.

C.2 Repair Welding Procedure Qualification

Welding procedures shall be qualified by preparing and testing welds in accordance with this appendix. At the option of the manufacturer, the tests specified in the ASME *Boiler and Pressure Vessel Code*, Section IX, may be substituted herein. For the purpose of this appendix, the term automatic welding includes both machine welding and automatic welding as defined in the ASME *Boiler and Pressure Vessel Code*, Section IX.

C.2.1 ESSENTIAL VARIABLES

An existing procedure shall not be applicable and new procedure must be qualified when any of the following essential variables is changed beyond the stated limits:

a. Welding process:

1. A change in the welding process, such as submerged arc to gas metal arc.

2. A change in the method, such as manual to semi-automatic.

b. Pipe material:

1. A change in grade category. When different alloying systems are used within one grade category, each alloying composition must be separately qualified. Grade categories are as follows:

- SMYS 42,000 psi or less
- SMYS greater than 42,000 psi, but less than 65,000 psi
- each grade with SMYS of 65,000 psi or greater

2. Within each grade category, a thicker material than the material qualified.

3. Within the grade category and thickness range, a carbon equivalent, CE (see note), based on product analysis for the material to be repaired, that is more than 0.04 percent greater than the CE of the material qualified.

Note:
$$CE = C + \frac{Mn}{6} + \frac{Cr + Mo + V}{5} = \frac{Ni + Cu}{15}$$

- c. Welding materials:
 - 1. A change in filler metal classification.
 - 2. A change in electrode diameter.

3. A change of more than 5 percent in the composition of shielding gas.

4. A change of more than 10 percent in the flow rate of shielding gas.

5. A change in submerged-arc welding flux from one designation to another.

- d. Welding parameters:
 - 1. A change in the type of current (such as AC versus DC).

2. A change in polarity.

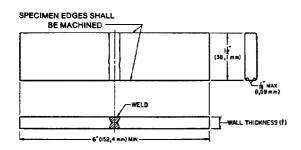
3. For automatic and semi-automatic welding, schedules of welding current, voltage, and speed may be established to cover ranges of wall thicknesses. Within the schedule, appropriately selected points shall be tested to qualify the entire schedule. Thereafter, a new qualification is required if there is a deviation from the qualified schedule greater than the following:

- 10 percent in amperage
- 7 percent in voltage

- 10 percent in travel speed for automatic welding

e. Weld bead: For manual and semi-automatic welding, a change in bead width greater than 50 percent.

- f. Preheat and post-weld heat treatment:
 - 1. Repair welding at a pipe temperature lower than the pipe temperature of the qualification test.
 - 2. The addition or deletion of postweld heat treatment.


C.2.2 MECHANICAL TESTING

C.2.2.1 Number of Tests

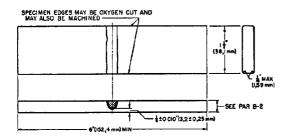
Two specimens of each type are required from each test.

C.2.2.2 Transverse Tensile Test

The transverse tensile test specimens shall be approximately 1.5 in. (38 mm) wide and shall have the transverse

Note: Weld reinforcement shall be removed from both faces.

Figure C-1—Transverse Tensile Test Specimen


butt weld perpendicular to the longitudinal axis at the center of the test specimen (See Figure C-1 or Figure 4.) The weld reinforcement shall be removed from both faces. The ultimate tensile strength shall be at least equal to the minimum specified for the pipe grade.

C.2.2.3 Transverse Guided-Bend Test

The transverse guided-bend test specimens shall conform to Figure C-2. The weld shall be made in a groove as shown. Each specimen shall be placed on the die with the weld at midspan and shall be bent approximately 180 degrees in a jig substantially in accordance with Figure C-3 and Table C-1, with the exposed surface of the weld in tension. The bend test shall be considered acceptable if no crack or other defect exceeding 1/8 in. (3.18 mm) in any direction is present in the weld metal or base metal after bending. Cracks that both originate along the edges of the specimen during testing and measure less than 1/4 in. (6.35 mm) in all directions shall not be considered.

C.2.2.4 Nick-Break Test

The nick-break specimens shall conform to Figure C-4. The weld shall be made in a groove as shown. Each specimen shall be saw-notched from both edges at the center of the weld and shall be broken by pulling or hammer blows at

Note: Weld reinforcement shall be removed.

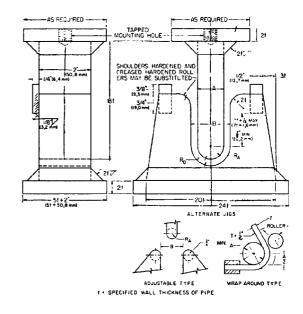


Figure C-3—Jig for Guided-Bend Test

the center of one end. The exposed surface of the specimen shall be visually examined and shall be considered acceptable if it meets the following criteria:

a. No gas pockets exceeding ${}^{1}/_{16}$ in. (1.59 mm) in any direction.

b. Not more than one gas pocket of any size for specified wall thicknesses of 0.250 in. (6.35 mm) and less.

c. Not more than two gas pockets of any size for specified wall thicknesses of 0.500 in. (12.7 mm) or less but greater than 0.250 in. (6.35 mm).

d. Not more than three gas pockets of any size for specified wall thicknesses greater than 0.500 in. (12.7 mm).

e. Slag inclusions must be separated by at least $\frac{1}{2}$ in. (12.7 mm) of sound metal and shall appear no greater than $\frac{1}{16}$ in. (1.59 mm) in width or $\frac{3}{16}$ in. (4.76 mm) in length.

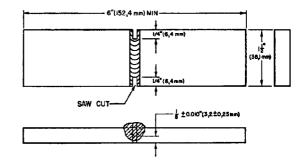


Figure C-4—Nick-Break Test Specimen

Table C-1—Guided-Bend Test Jig Dimensions										
(1)	(2)	(3)	(4)	(5)	(6)					
			Pipe Grade ^a							
Member Dimension	A,B & X42	X46	X52 & X56	X60 & X65	X70 & X80					
Radius of male member, R_A	3t	3 ¹ / ₂ t	4 <i>t</i>	$4^{1}/_{2^{t}}$	5 <i>t</i>					
Radius of female member, R _B	$4t + \frac{1}{16}$ in. (4t + 1.6 mm)	$4^{1}/_{2}t + {}^{1}/_{16}$ in. ($4^{1}/_{2}t + 1.6$ mm)	$5t + \frac{1}{16}$ in. (5t + 1.6 mm)	$5^{1}/_{2}t + {}^{1}/_{16}$ in. (5 ¹ / ₂ t + 1.6 mm)	$6t + \frac{1}{16}$ in. (6t + 1.6 mm)					
Width of male member, A	6 <i>t</i>	7 <i>t</i>	8 <i>t</i>	9t	10 <i>t</i>					
Width of groove in female member, B	$8t + \frac{1}{8}$ in. (8t + 3.2 mm)	$9t + \frac{1}{8}$ in. (9t + 3.2 mm)	$10t + \frac{1}{8}$ in. (10t + 3.2 mm)	$11t + \frac{1}{8}$ in. (11t + 3.2 mm)	$12t + \frac{1}{8}$ in. (12t + 3.2 mm)					

Notes:

1. See Figure C-4.

2. t = specified wall thickness of the pipe.

^aFor intermediate grades of pipe, the dimensions of the bending jig shall conform to those shown for the next lower grade or shall be proportional thereto.

C.3 Welding Personnel Performance Qualification

C.3.1 QUALIFICATION

C.3.1.1 General

Each repair welder and operator is required to qualify. A repair welder or operator qualified on one grade category is qualified for any lower grade category provided the same welding process is used.

C.3.1.2 Testing

To qualify, a repair welder or operator must produce welds that are acceptable in the following tests:

a. Film radiographic examination per Section 9 of this specification.

b. Two transverse guided-bend tests per C.2.2.3 of this appendix.

c. Two nick-break tests per C.2.2.4 of this appendix.

C.3.1.3 Test Failures

If one or more of the tests in C.3.1.2 fail to meet the specified requirements, the welder or operator may make one additional qualification weld. If that weld fails one or more of the tests in C.3.1.2, the welder or operator is disqualified. No further retests shall be permitted until the welder has completed additional training.

C.3.2 REQUALIFICATION

Requalification in accordance with C.3.1 is required under the following circumstances:

a. One year has elapsed since the last prior applicable qualification.

b. The individual has not been welding using qualified procedures for a period of 3 months.

c. There is reason to question the individual's ability.

APPENDIX D—ELONGATION TABLE (NORMATIVE)

The minimum elongation values calculated by the equation in Table 3 are given in Table D-1.

66

API SPECIFICATION 5L

Table D-1—Elongation Table

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)
	Tensile T	est Specimen				-	Elongatior	in 2 inch	es (minim	um percen	nt)		
	Specif	ied Wall Thick	ness (in.)	A25	A	B X42	X46	X52	X56	X60	X65	X70	X80
Area A	$^{3}/_{4}$ in.	1 in.	$1^{1}/_{2}$ in.			A42	Sp	ecified Te	nsile Strer	ngth (psi)			
sq. in.	Specimen	Specimen	Specimen	45,000	48,000	60,000	63,000	66,000	71 ,000	75,000	77,000	82,000	90,000
0.75 and	.994 and	.746 and	.497 and	38.5	36.0	29.5	28.5	27.0	25.5	24.0	23.5	22.5	20.5
greater 0.74	greater .980993	greater .735–.745	greater .490–.496	38.0	36.0	29.5	28.0	27.0	75.5	24.0	00 F		
0.73	.967979	.726734	.484–.489	38.0	36.0	29.5 29.5	28.0 28.0	27.0 27.0	25.5 25.5	24.0	23.5	22.0	20.5
0.72	.954966	.715725	.477–.483	38.0	36.0	29.5	28.0	27.0	25.5 25.0	24.0	23.5	22.0	20.5
0.71	.951 .960	.706–.714	.471–.405	38.0	35.5	29.0 29.0	28.0	27.0	25.0 25.0	24.0	23.5	22.0	20.5
0.70	.927940	.695705	.464470	38.0	35.5	29.0	28.0 28.0	26.5	25.0 25.0	24.0 24.0	23.5 23.5	22.0	20.5
				50.0	55.5	27.0	20.0	20.5	23.0	24.0	23.5	22.0	20.0
0.69	.914–.926	.686–.694	.457463	37.5	35.5	29.0	28.0	26.5	25.0	24.0	23.0	22.0	20.0
0.68	.900913	.675	.450456	37.5	35.5	29.0	27.5	26.5	25.0	23.5	23.0	22.0	20.0
0.67	.887–.899	.666674	.444–.449	37.5	35.5	29.0	27.5	26.5	25.0	23.5	23.0	22.0	20.0
0.66	.874–.886	.655665	.437443	37.5	35.0	29.0	27.5	26.6	25.0	23.5	23.0	21.5	20.0
0.65	.861873	.646–.654	.431–.436	37.0	35.0	28.5	27.5	26.5	24.5	23.5	23.0	21.5	20.0
							-	-					20.0
0.64	.847860	.635–.645	.424–.430	37.0	35.0	28.5	27.5	26.5	24.5	23.5	23.0	21.5	20.0
0.63	.834–.846	.626–.634	.417423	37.0	35.0	28.5	27.5	26.0	24.5	23.5	23.0	21.5	20.0
0.62	.820833	.615625	.410416	37.0	35.0	28.5	27.0	26.0	24.5	23.5	22.5	21.5	19.5
0.61	.807819	.606614	.404–.409	36.5	34.5	28.5	27.0	26.0	24.5	23.0	22.5	21.5	19.5
0.60	.794–.806	.595–.605	.397–.403	36.5	34.5	28.5	27.0	26.0	24.5	23.0	22.5	21.5	19.5
0.59	.781793	.586594	.391396	36.5	34.5	28.0	27.0	26.0	24.0	32.0	22.5	01 E	10.5
0.58	.767780	.575–.585	.384–.390	36.5	34.5	28.0	27.0	26.0	24.0 24.0	23.0 23.0	22.5 22.5	21.5	19.5
0.57	.754–.766	.566–.574	.377383	36.0	34.0	28.0	27.0	25.5	24.0	23.0	22.5 22.5	21.0 21.0	19.5 19.5
0.56	.740753	.555565	.370376	36.0	34.0	28.0	26.5	25.5	24.0	23.0	22.5	21.0	19.5 19.5
0.55	.727739	.546554	.364369	36.0	34.0	28.0	26.5	25.5	24.0	22.5	22.0	21.0	19.5
	714 706	526 646	055 070		• • •								
0.54	.714726	.535545	.357363	36.0	34.0	27.5	26.5	25.5	24.0	22.5	22.0	21.0	19.0
0.53 0.52	.701713	.526–.534	.351356	35.5	33.5	27.5	26.5	25.5	23.5	22.5	22.0	21.0	19.0
0.52	.687–.700 .674–.686	.515525	.344350	35.5	33.5	27.5	26.5	25.0	23.5	22.5	22.0	20.5	19.0
0.50	.660–.673	.506–.514 .495–.505	.337343	35.5	33.5	27.5	26.0	25.0	23.5	22.5	22.0	20.5	19.0
0.50	.000073	.493303	.330336	35.5	33.5	27.0	26.0	25.0	23.5	22.5	22.0	20.5	19.0
0.49	.647659	.486–.494	.324–.329	35.0	33.0	27.0	26.0	25.0	23.5	22.0	21.5	20.5	1 9.0
0.48	.634–.646	.475485	.317323	35.0	33.0	27.0	26.0	25.0	23.0	22.0	21.5	20.5	19.0
0.47	.621633	.466474	.311–.316	35.0	33.0	27.0	26.0	24.5	23.0	22.0	21.5	20.5	18.5
0.46	.607620	.455–.465	.304310	34.5	33.0	27.0	25.5	24.5	23.0	22.0	21.5	20.0	18.5
0.45	.594606	.446–.454	.297303	34.5	32.5	26.5	25.5	24.5	23.0	22.0	21.5	20.0	18.5
0.44	.580–.593	.435445	.290296	34.5	32.5	26.5	25.5	24.5	23.0	21.5	21.0	20.0	18.5
0.43	.567579	.426434	.284289	34.5	32.5	26.5	25.5 25.5	24.5	23.0	21.5	21.0	20.0	18.5
0.42	.554566	.415425	.277283	34.0	32.0	26.5	25.0	24.0	22.5	21.5	21.0	20.0	18.5
0.41	.541553	.406414	.271276	34.0	32.0	26.0	25.0	24.0	22.5	21.5	21.0	20.0	18.0
0.40	.527540	.395–.405	.264270	34.0	32.0	26.0	25.0	24.0	22.5	21.5	21.0	19.5	18.0
0.20	514 576	106 204	257 242	10 F	<u></u>	a < ^							
0.39 0.38	.514–.526 .500–.513	.386394	.257263	33.5	31.5	26.0	25.0	24.0	22.5	21.0	20.5	19.5	18.0
0.38	.500–.513 .487–.499	.375385	.250256	33.5 33.0	31.5	26.0	24.5	23.5	22.0	21.0	20.5	19.5	18.0
0.37	. 487–.499 .474–.486	.366	.244249	33.0	31.5	25.5	24.5	23.5	22.0	21.0	20.5	19.5	18.0
0.50	.7/7480	.355–.365	.237243	33.0	31.0	25.5	24.5	23.5	22.0	21.0	20.5	19.5	17.5

_ ___

SPECIFICATION FOR LINE PIPE

Table D-1—Elongation Table—Continued

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)
	Tensile Te	st Specimen					Elongatio	on in 2 incl		um percer			
	Specifie	A25	A25 A B X46 X52 X56 X60 X65 X42 Specified Tensile Strength (psi)							X70	X80		
Area A sq. in.	³ / ₄ in. Specimen	1 in. Specimen	1 ¹ / ₂ in. Specimen	45,000	48,000	60,000	63,000	66,000	71,000	75,000	77,000	82,000	90,00
0.35	.461473	.346354	.231–.236	33.0	31.0	25.5	24.5	23.5	22.0	21.0	20.5	19.0	17.5
0.34	.447–.460	.335–.345	.224–.230	32.5	31.0	25.0	24.0	23.0	21.5	20.5	20.0	19.0	17.5
0.33	.434–.446	.326–.334	.217223	32.5	30.5	25.0	24.0	23.0	21.5	20.5	20.0	19.0	17.5
0.32	.420433	.315–.325	.210216	32.5	30.5	25.0	24.0	23.0	21.5	20.5	20.0	19.0	17.5
0.31	.407419	.306–.314	.204209	32.0	30.5	25.0	23.5	22.5	21.5	20.5	20.0	18.5	17.0
0.30	.394–.406	.295305	.197–.203	32.0	30.0	24.5	23.5	22.5	21.0	20.0	19.5	18.5	17.0
0.29	.381–.393	.286–.294	.191–.196	31.5	30.0	24.5	23.5	22.5	21.0	20.0	19.5	18.5	17.0
0.28	.367380	.275285	.184–.190	31.5	29.5	24.5	23.0	22.5	21.0	20.0	19.5	18.5	17.0
0.27	.354366	.266–.274	.177–.183	31.0	29.5	24.0	23.0	22.0	20.5	19.5	19.0	18.0	16.5
0.26	,340–.353	.255265	.170–.176	31.0	29.0	24.0	23.0	22.0	20.5	19.5	19.0	18.0	16.5
0.25	.327–.339	.246–.254	.164–.169	30.5	29.0	23.5	22.5	22.0	20.5	19.5	19.0	18.0	16.:
0.24	.314–.326	.235–.245	.157–.163	30.5	29.0	23.5	22.5	21.5	20.0	19.0	19.0	18.0	16.
0.24	.301313	.226234	.151–.156	30.0	28.5	23.5	22.5	21.5	20.0	19.0	18.5	17.5	16.
0.23	.287300	.215225	.144–.150	30.0	28.5	23.0	22.0	21.0	20.0	19.0	18.5	17.5	16.
0.22	.274–.286	.206214	.137–.143	29.5	28.0	23.0	22.0	21.0	19.5	18.5	18.5	17.5	16.
0.20	.260–.273	.195–.205	.130136	29.5	27.5	22.5	21.5	21.0	19.5	18.5	18.0	17.0	15.
	0.17 0.50	106 104	.124–.129	29.0	27.5	22.5	21.5	20.5	19.5	18.5	18.0	17.0	15.
0.19	.247–.259 .234–.246	.186–.194 .175–.185	.124123	29.0 29.0	27.0	22.0	21.5	20.5	19.0	18.0	17.5	17.0	15.
0.18	.234246	.175185	.111–.116	29.5	27.0	22.0	21.0	20.0	19.0	18.0	17.5	16.5	15
0.17	.221233	.155165	.104–.110	28.0	26.5	21.5	21.0	20.0	18.5	17.5	17.5	16.5	15
0.16 0.15	.194–.206	.146–.154	.097–.103	27.5	26.0	21.5	20.5	19.5	18.5	17.5	17.0	16.0	15
							• • • •	10.5	10.0	175	17.0	16.0	14
0.14	.180193	.135–.145	.091096	27.5	26.0	21.0	20.0	19.5	18.0	17.5 17.0	17.0	15.5	14
0.13	.167179	.126134	.084090	27.0	25.5	21.0	20.0	19.0 19.0	18.0 17.5	17.0	16.5	15.5	14
0.12	.154–.166	.115–.125	.077–.083	26.5	25.0	20.5	19.5 19.5	19.0	17.5	16.5	16.0	15.0	14
0.11	.141153	.106–.114	.071076	26.0	24.5	20.0 19.5	19.5 19.0	18.0	17.0	16.0	16.0	15.0	13
0.10	.127–.140	.095–.105	.064–.070	25.5	24.0	19.5	19.0	10.0	17.0	10.0	10.0	10.0	10
0.09	.114–.126	.086–.094	.057–.063	25.0	23.5	19.5	18.5	17.5	16.5	16.0	15.5	14.5	13
0.08	.100–.113	.075–.085	.050056	24.5	23.0	19.0	18.0	1 7.5	16.0	15.5	15.0	14.5	13
0.07	.087099	.066–.074	.044–.049	24.0	22.5	18.5	—	_	—			—	13
0.06	.074–.086	.055065	.037043	23.0	22.0	18.0					—		12
0.05	.061–.073	.046–.054	.031036	22.5	21.0	17.0		—		—			12
0.04	.047–.060	.035–.045	.024–.030	21.5	20.0	16.5	_	_	_	_	_		11
0.04	.034046	.026034	.017023	20.0	19.0	15.5		_	<u> </u>	—	—		11
0.02	.020033	.015025	.010–.016	18.5	17.5	14.5					—	_	10
0.01 and less		.014 and less	.009 and less	16.0	15.0	12.5	_			_	—		8

APPENDIX E-DIMENSIONS, WEIGHTS, AND TEST PRESSURES-METRIC EQUIVALENTS (NORMATIVE)

Tables E-1A, E-1B, and E-1C provide the metric (SI) unit equivalent of U.S. customary unit values for dimensions, weights, and test pressures shown in Tables 6A, 6B, and 6C.

_ -- -

70

J

API SPECIFICATION 5L

(10)	Grade B	Alt.		11							Ŕ
(9) (kPa × 100 °)	•	Std.	48 59	48 59	48 59	48 59 69	85 59 69	59 59 69	90 131 158	90 131 158). o other grade
(7) (8) (9) Minimum Test Pressure ^b (kPa × 100 ^c)	Grade A	Alt.	!							111	ation (see 7.2 s applicable to
(7) Minimum Te	Gra	Std.	48 59	48 59	48 59	84 59	59 59	85 69	83 124 152	83 124 152	ste for inform 3 for pressure:
(9)	Grade	Std.	48 59	48 59	48 59	8 5 9 8 6	59 89 89	59 59	888	888	and are given he 80 only. See 9.4.
(5)	Inside	Diameter, a (mm)	6.9 5.5	9.3 7.7	12.5 10.7	15.7 13.9 6.3	20.9 18.9 11.1	26.6 24.4 15.2	35.0 32.4 22.8	40.9 38.1 27.9	omary unit equivalents of the metric values shown in this table. subject to tolerances described in Table 7. Inside diameters are nominal and are given here for information (see 7.2), ipply to Grades A25, A, B, X42, X46, X52, X56, X60, X65, X70, and X80 only. See 9.4.3 for pressures applicable to other grades.
(4) Diain-Frad	Weight,	w _{pr} (kg/m)	0.36 0.47	0.62 0.79	0.84 1.10	1.28 1.61 2.55	1.70 2.19 3.64	2.52 3.21 5.45	3.43 4.51 7.77	4.07 5.43 9.58	metric values shown d in Table 7. Inside d 2. X46, X52, X56, X1
3)	Wall	(mm) ^a	1.7 2.4	2.2 3.0	2.3 3.2	2.8 3.7 7.5	2.9 3.9 7.8	3.4 4.5 9.1	3.6 4.9 9.7	3.7 5.1 10.2	nit equivalents of the to tolerances describe 5rades A25, A, B, X4
(2)	Outside		10.3 10.3	13.7 13.7	1.71 1.71	21.3 21.3 21.3	26.7 26.7 26.7	33.4 33.4 33.4	42.2 42.2 42.2	48.3 48.3 48.3	Note: See Tables 6A, 6B, and 6C in Section 7 for U.S. customary unit equivalents of the metric values shown in this table. Outside diameter and wall thickness dimensions shown are subject to tolerances described in Table 7. Inside diameters are PThe test pressures given in Tables E-1A, E-1B, and E-1C apply to Grades A25, A, B, X42, X46, X52, X56, X60, X65, X70 e100 kPa = 1 bar.
		Weight	0.24 0.31	0.42 0.54	0.57 0.74	0.85 1.09 1.71	1.13 1.47 2.44	1.68 2.17 3.66	2.27 3.00 5.21	2.72 3.63 6.41	Note: See Tables 6A, 6B, and 6C in Section 7 for U.S. cust ^{aO} utside diameter and wall thickness dimensions shown are ^b The test pressures given in Tables E-1A, E-1B, and E-1C are c100 kPa = 1 bar.
(1) Designation	0	Wall	Std. XS	Std. XS	Std. XS	Std. XXS XXS	Std. XXS XXS	Std. XS XXS	Std. XS XXS	Std. XXS X	ables 6A, 6B, an neter and wall th ssures given in 7 bar.
	Nominal	Size	8/1 8/1	1/4 1/4	3/8 3/8	555 545	3/4 \$/ ⁶ \$/ ⁶		1/4 1/4 1/4	11/2 11/2 11/2	Note: See Tables aOutside diamete bThe test pressure c100 kPa = 1 bar.

Table E-1BPla	BPlain-En	d Line Pi	ain-End Line Pipe Dimensions, Weights, and Test Pressures for Sizes 2 ^{3/6} Through 5 ^{9/16} (Metric Units)	s, Weights	, and Te	est Pres	sures for	Sizes 2	3/8 Thro	ugh 5 %	16 (Metri	ic Units)	
Outside	Wall	Plain- End	Inside				Minin	Minimum Test Pressure ^b (kPa \times 100 ^c)	ressure ^b (k	Pa × 100 c	(
Dialificiti,	LINCKNESS, Weight, LAMINELEI,	weigin,		Ę	Ţ		Ċ	ç			ł		

207 207 207 207 207 207 207 207 207 207
201 201 201 201 201 201 201 201 201 201
207 207 207 207 207 207 207 207 207 207
207 207 207 207 207 207 207 207 207 207
201 201 201 201 201 201 201 201 201 201
207 207 207 207 207 207 207 207 207 207
207 207 207 207 207 207 207 207 207 207
207 207 207 207 207 207 207 207 207 207
12 12 12 12 12 12 12 12
172
8 8 8 8 8
Alt Alt Alt Alt Std. Alt Alt Alt
62.6 62.0 60.2 59.0 45.0
8.69 9.16 10.51 11.39 20.37
5.2 5.5 6.4 7.0 14.0
73.0 73.0 73.0 73.0 73.0
5.79 6.13 7.01 7.66 13.69
27/8 27/8 27/8 27/8 27/8

SPECIFICATION FOR LINE PIPE

API SPEC*5L 95 🔳	0732290	0541212	637 🔳
------------------	---------	---------	-------

										_		AF	PI SF	ECIF	FICAT	ION 5L										
	Grade X80	157	191 200	102	502	207	207	207	207	207	207	207	201	207	201	202 20	137	182	22	502	202		502	52	502	207
	Grade X70	137	171	202	207	207	207	207	207	207 207	207 207	207	207	207 207	201	207 207	120	89	200 183	201	207	502	202 204	502	502	207
·	Grade X65	127	159	201	194	207	207	207	207	207 207	207 207	207	207	207 207	202	207	H	6 <u>8</u> 5	<u>8</u> 69 [102 102	207	202	202	202	202	202
	Grade X60	117	147	961	621	202	207	207	207	207 207	207 207	207	507	207 207	52	201 201 201	103	137	171	176	207 196	207	201	502	502	207
Minimum Test Pressurc ^b (kPa × 100°)	Grade X56	109	137	681	167	207	207	207	207	207 207	207 207	207	207	207 207	201	207	96	128	<u>8</u> 7	10 ²	205 182	201	207	502	507	207
ressure ^b (k	Grade X52	102	127	<u>8</u>	155	194 174	207	194	207	207 207	207 207	207	207	207 207	201	207 207	89	611	136	153	161	207 187	202 204	102 102	102 E	207
num Test P	Grade X46	06	112	3 2	137	171	193	171	188	205 205	207 207	207	202	207	502	201 201 201	61	20 20 20	5 2 3	05 132	168	187	200 180 80	202	222	207
Minin	Grade X42	82	103	137	121	157	176	157	<u>8</u>	207 188	207 207	207	207	207 207	502	207	72	88	02 01 1 1 0 1	123	137	151	<u>88</u> 79 5	92 <u>5</u>	202	207
	Grade B	89	1		104			130	143	156	172	15		172	172	121	99	8	- 16	102	114	125	137	162 	182	§
	Grade A	59			68		1	112	123	134	154	15			172	172	51	1 38	78	88	8	<u>8</u>		139	156	
	Grade A25	41	¥	3	69	13	8	69	8	1 56	18		ł I		8		I	 	11	55		6	8	18	ł I	I
		Std.	Alt. Std	Alt.	Std.	Alt. Std	Alt.	Std.	Std.	Alt. Std.	Alt. Std.	Alt. Std	Alt.	Std. Alt.	Std.	Alt. Alt.	Std.	Std.	Alt. Std.	All. Std.	Alt.	Std.	Alt.	Std.	Std.	Alt.
Inside	Diameter, d (mm)	84.7	233	200	82.5	817		80.9	80.1	79.3	6.77	TA I	1.0/	74.7	73.7	58.5	97.4	96.0	95.2	94.4	93.6	92.8	92.0	90.2	88.8	
Plain- End	weignt, w _{pe} (kg/m)	4.50	5 05		6.76	7.57		8.37	9.17	9.95	11.31	13.07	70.01	14.32	15.24	27.63	5.15	6.82	7.76	8.70	9.63	10.55	11.46	13.48	15.02	16 55
Wall	t mickness, t (mm) ^a	2.1	38	2	3.2	3.6	2	4.0	4.4	4.8	5.5	64	t i	7.1	7.6	15.2	2.1	2.8	3.2	3.6	4.0	4,4	4.8	5.7	6.4	r
Outside		88.9	88 0		88.9	88.9		88.9	88.9	88.9	88.9	88 0	00.7	88.9	88.9	88.9	9.101	9.101	9.101	9.101	9.101	9.101	9.101	9.101	101.6	2 101
	ght	3.03	3 05		4.51	5.06		5.57	6.11	6.65	7.58	8 68	00-0	9.00	10.25	18.58	3.47	4.53	5.17	5.81	6.40	7.03	7.65	9.11	10.01	2
Pretore	Size Wei	3 i/2d	۶ ا <i>ری</i> ا	:	3 1/2d	3 1/2 d	!	3 1/2d	31/2	31/2	31/2	416		3 IS	3 1/2	312	4 d	4 d	4 d	4 d	4 d	4	4	4	4	

Table E-1B—Plain-End Line Pipe Dimensions, Weights, and Test Pressures for Sizes 23/8 Through 59/16 (Metric Units)—Continued

5.80 110.1 5.81 110.1 8.77 107.9
Std.
כ
Std. Alt.
Std. Alt.
Std. Alt.
Std. Alt.
Std. Alt. Std. 83
Alt. — 83 Std. 83
Std.
Alt.
Std. '
Std. 117 Alt. –
Std. Alt.
Alt.
Std Std Std Std Std Std Std 116 Std 128 Std 128 Std 128 Std 128 Std 128 Std 126 Std Std Std Std Std Std Std Std Std Std

SPECIFICATION FOR LINE PIPE

ē	
<u> </u>	
, iti	
ပိ	
1	
(2	
Ē	
ر ن	
Ĭ,	
ž	
^{9/16} (Metric	
./٩	
5	
- P)
õ	
% Th	
Ñ	
Se	
Ĭ.	
Š	
Pressures for Sizes 24	
ŝ	
nre	
SSI	
e	
Test	
F	
hts, and	
ທີ	
Ĕ	
.ie	'
≥	
Š,	
ō	
ns	
ne De	
ă	
ē	
_	
Line Pi	-
Ē.	-
Ę	
Ш	
Ł	
ai	
4	
ф	
Ξ.	
ш Ф	
ž	
Tat	
	ļ
	3

	- da	X80	207	207	207	207	
	- de	X70	207	207	207	207	
	Grada	X65	207	207	207	207	
() ()	Grada	X60	207	207	207	207	
$kPa \times 100^{\circ}$	Grada	X56	207	207	207	207	
$Minimum$ Test Pressure ^b (kPa \times 100°)	Grada	X52	207	207	207	207	
mum Test I	Grade	X46	207	207	207	207	
Mini	Grade	X42	207	207	207	207	
	Grade	B	193	193	193	193	
	Grade	A	167	193	193	193	
	Grade	A25	139	186	193	193	
			Std.	Std.	Std.	Std.	
Inside	Diameter,	, (mm)	122.3	115.9	109.5	103.1	
Plain- End	weight,	(kg/m)	30.88	40.28	49.17	57.56	
Wall	I nickness,	(mm) ^a	9.5	12.7	15.9	19.1	
Outside	Diameter,	(mm) ^a	141.3	141.3	141.3	141.3	
	Jesignation	Weight		27.04			1
ć	Incsign	Size	59/16	5 ^{9/16} d	59/16d	5 9/16	

Note: See Tables 6A, 6B, and 6C in Section 7 for U.S. customary unit equivalents of the metric values shown in this table. ^aOutside diameter and wall-thickness dimensions shown are subject to tolerances described in Table 7. Inside diameters are nominal and are given here for information (see 7.2). ^bThe test pressures given in Tables E-1A, E-1B, and E-1C apply to Grades A25, A, B, X42, X46, X56, X56, X60, X65, X70 and X80 only. See 9.4.3 for pressures applicable to other grades. c100 kPa = 1 bar.

of these sizes are special plain-end weights. All other sizes are regular weight. See Table 7 for applicable weight tolerances. For Grades X42 and higher, weights intermediate to regular weights shall be considered regular weights; and weights intermediate to the heaviest tabulated special plain-end weight and the lightest regular weight shall be considered special plain-end weights; and weights intermediate to the heaviest tabulated special plain-end weight and the lightest regular weight shall be considered special plain-end weights.

API SPECIFICATION 5L

API SPEC*5L 95 📰 0732290 0541214 407 📟

_

	(17)
	(16)
Units)	(15)
0 (Metric Unit	(14)
gh 8	(13)
s 65/e Throug	(12)
for Sizes ((11)
essures fo	(10)
Test Pre	(6)
ts, and	(8)
Veights ,	(<u>1</u>)
ions, V	(9)
ipe Dimens	(5)
d Line P	(4)
	(3)
ible E-1C	(2)

Grade X80

Grade X70

		5~	ļ														• • •					-				-											-			
(15)	-	Virade X65	84	5 =	122	173	150	8 <u>61</u>	10	206	207	207	207	207	107	107	207	207	207	107	207	07	121	147	158	105	207	207	207	207	102	207	207	207	207	207	207	207 207		
(14)	. .	Grade X60	36	2 CO	117	- 11	761	140	101	81	205	207	207	207	207	207	207	207	207	102	207	e	112	135	<u>4</u>	001	001 1001	207	207	207	102	207	207	207	207	207	207	207 207		
(13)	\sim I	Grade X56	CL	18	001	103	571	051	164	12	192	207	207	207	207	207	207	207	207	202	207	10	105	126	138	14/	186	207	207	207	107	207	207	207	207	207	207	207		
(12)	st Pressure	Grade X52	66	000	00		4 C	171	<u></u>	161	178	203	207	207	207	107	202	207	207	107	207	9F	6	117	127	150	0C1	194	200	207	107	202	207	207	207	207	207	207 207		
(II)	Minimum Test Pressure	Grade X46	9	6	r S	R	101	211	571 571	CC1 145	157	179	201	207	207	201	207	207	207	102	207	07	6 %	103	112	121	153	172	178	681	107	207	207	207	207	207	207	207 207		
(10)		Grade X42	2	ţ Ę	10	25	7 5	701	21 22	31	143	162	183	205	207	107	207	207	207	202	202	S	66	94	102	110	071	157	162	173	189	202	207	207	207	207	207	207 207	F	
(6)	e B	Alt.	ų	f 9	6 9	8	1	83	¥ 2	6 E	111	136	153	170	172	561	193	193	193	193	193	5	2 23	62	:	2 2	60 YII	131	135	<u>1</u>	161	5	193	193	193	193	193	193 193		
(8)	Grade B	Std.	16	10	Ŷÿ	<u>, </u>	5	80	c S	708	88	2 00	123	136	150	8	193	193	193	193	193	ę	25	63		4/	5 5	105	108	116	126	<u>}</u>	189	193	193	193	193	1 <u>93</u>		
£	Grade A	Alt.	30	£ 2	1 9	5	86	5		80	6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	117	131	146	161	9/1	191	193	193	193	193	5	5 2	89		6, 0	<u> </u>	112	116	123	51	9 <u>6</u>	193	193	193	193	193	193 193		
(9)	Grae	Std.	5	5 5	1	.	38	5 (5 F	2 7	e 28	58	105	117	129	141	187	193	193	193	193	ž	56 54	54	I	38	77	88	92	8	108	81	162	180	193	193	193	193 193		
(2)	Inside Diameter,	(س س)	1 5 1 1	1.401	1.201	101.9	1.101	160.3	C.961	1.901	2771	155.5	154.1	152.5	150.9	149.3	140.0	139.7	136.5	131.7	123.9		211.1	209.5	208.7	207.9	2001	203.3	202.7	201.7	200.1	7.061 103.7	190.5	187.3	182.5	180.9	177.9	174.7		
(4)	Plain- End Weight,	w _{pe} (kg/m)	0 £1	0.01	C4.11	50.51	14.62	16.21	17.78	10.00	12.02 22.47	25.55	28.22	31.25	34.24	37.20	42.07	54.31	59.76	61.69	79.98		4.7 2 2	25.37	27.43	29.48	16.66	41.14	42.65	45.14	49.10 52.04	4.95 79	72.22	79.67	90.62	94.20	100.84	107.79		
(3)	Wall Thickness,	<i>t</i> (mm) ^a	 - c	- 7	00	7.5	3.6	4.0	4.4	4. v v: c	4.0 9.0	6.4 6.4	7.1	7.9	8.7	9.5 0.1	0.11	14.3	15.9	18.3	22.2		7.£ ₽ 0	8.4	5.2	5.6	4 C 0 r	0.1	8.2	8.7	9.5	1.1.1	14.2	15.9	18.3	1.91	20.6	22.2 25.4	1.074	
(2)	Outside Diameter,	D (mm) ^a	0071	108.3	106.5	108.3	168.3	168.3	168.3	108.3	168.3 168.3	168.3	168.3	168.3	168.3	168.3	100.5	168.3	168.3	168.3	168.3		1.612	219.1	219.1	219.1	1.612	1.612	219.1	219.1	219.1	1.612	219.1	219.1	219.1	219.1	219.1	219.1	1.7.1.7	
	lation	Weight		09.0	6C' /	8.68	9.76	10.78	11.85	76721	15.92	17.02	18.97	21.04	23.08	25.03	10.82	36.39	40.05	45.35	47.00 53.73		14 11	16.94	18.26	19.66	22.30	01.42	28.55	30.42	33.04 33.04	38.3U 43.20	48.40	53.40	60.71	63.08	67.76	72.42		
(E)	Designation	Size	264.4	n8/r0		03/8d	p8/c9	وي/8q وي/8q	69/8 25/2	6 ² /8	6 ² /8	65/8	6 ⁵ /8	6 ⁵ /8	6 ⁵ /8	6 ⁵ /8	0-/8 65/e	65/8	6 ⁵ /8	65/8 26	6 ⁵ /8	<u>-</u>	82/80 85/ed	82/8	82/8	82/8	8/c8	0-78 85/8	82/8	82/8	82/8 25/8	8/-8 05/e	85/×	82/8	82/8	8/58	85/s	85/8 85/e	01-0	

SPECIFICATION FOR LINE PIPE

																AP	'I SP	ECIF	ICA	TIO	N 5	L							_									-
(11)			Grade X80	178	192	207	207	207	202	207	207	207	207	207	207	207	207 207		121	6C1	162	185	207	207	207	207	207	207	207	207	207	207	107	207	207	207	207	126
(16)			Grade X70	155	167	161	207	207	202	207	207	207	202	207	207	207	207 207		111	130	141	161	181	200	207	207	207	207	207	207	207	207	207	207	207	207	207	011
(15)			Grade X65	144	155	171	198	207	102	202	207	207	207	201	207	207	207	-	501	121	131	150	168	186	197	207	207	207	/07 202	207	207	207	202	207	207	207	207	102
(14)	() c)		Grade X60	133	143	163	183	200	102	207	207	207	107	502	207	207	207	ŭ	<u> </u>	co 1	121	138	155	172	182	207	207	207	202	207	207	207	202	207	207	207	207	64
(13)	^b (kPa × 10		Grade X56	124	134	152	170	187	102	207	207	207	202	207	207	207	207 207	00	88	02 201	113	129	145	161	[69 [7]	193	207	207	102	207	207	207	207	207	207	207	207	88
(12)	st Pressure		Grade X52	11	124	142	158	174	661 705	207	207	207	207	207	207	207	207	Ċ	70	<u></u> 25	105	119	134	149	158	6/1	194	207	207	207	207	207	202	207	207	207	207	82
(11)	Minimum Test Pressure ^b (kPa \times 100 ^c)		Grade X46	102	10	125	140	154	183	207	207	207	207	207	207	207	207	ţ	2 2	2 2	36 26	105	119	132	139	158	172	185	102	207	207	207	207 202	207	207	207	207	5
(01)	X		Grade X42	63	100	114	127	141	7	200	207	502	201	207	207	207	207	2	8 6	t g	85	8	108	121	127	145	156	69 1	202 202	207	207	202	2012	207	207	207	207	γų
6)		e B	Alt.		74	84	94	103	110	147	Ι	189 001	<u>8</u>	193	193	193	<u>6</u> 6	Ċ,	2 6	3	62	11	80	88	28	8		124	5	177	193	193	<u>6</u>	193	193	<u>6</u>	193	48
(8)		Grade B	Std.		59	68	75	88	38	118	I	152	901 163	193	193	193	56 193	00	40 43	}	50	56	2	71	21 2 12	85	I	8	127	142	156	170	193	193	193	193	193	30
6		le A	Alt.		63	72	81	68	<u>8</u> 5	126	l	162	193 193	193	193	193	193 193	ć	4 V 7 V 7	5	53	61	68	26	8 8	6	I	107	136	152	167	183	193	193	193	193	193	4
(9)		Grade A	Std.		50	58	3	5	6 2	5 <u>0</u>	I	130	<u> </u>	187	193	193	561 193	řc	£ 5	5	43	49	54	61	8 Z	73	ł	85	110	121	134	146 158	170	183	193	193	193	33
(2)	Incida	Diameter,	<i>م</i> (mm)	262.7	261.9	260.3	258.9	257.5	1.002	250.9	247.7	244.5	236.5	231.9	228.7	225.5	209.5	215.1	1.010	313.5	312.7	311.1	309.7	308.1	307.1	304.9	303.3	301.7	295.3	292.1	288.9	7.082	279.5	276.3	273.1	269.9	260.3	346.0
(4)	Plain- End	Weight,	w _{pe} (kg/m)	34.35	36.94	42.09	46.57	51.03	20.20	71.72	81.55	91.26 100.85	114.99	128.27	137.36	146.30	c1.cc1 188.75	24 67	10.40	40.87	43.96	50.11	55.47	61.56	07.67 67.67	73.65	79.65	85.62 07.46	109.18	120.76	132.23	154.08	165.17	176.13	186.97	197.68 208.27	229.06	41.52
(3)	lleW	Thickness,	ر سm)ء	5.2	5.6	6.4	7.1	20 F	93	11.1	12.7	14.3 15 0	18.3	20.6	22.2	23.8	31.8	ŸŸ	t oc t oc	5.2	5.6	6.4	7.1	7.9	4.0x	9.5	10.3	1.1	14.3	15.9	17.5	19.1 20.6	22.2	23.8	25.4	27.0	31.8	4.8
(2)	Ontside	Diameter,	и в(тт)	273.1	273.1	273.1	273.1	273.1	273.1	273.1	273.1	273.1	273.1	273.1	273.1	273.1	273.1	373.0	323.9	323.9	323.9	323.9	323.9	323.9	6.626 0.525	323.9	323.9	323.9 373 0	323.9	323.9	323.9	9.675 9.72 0	323.9	323.9	323.9	323.9	323.9	355.6
_		nation	Weight	22.87	24.63	28.04	31.20	34.24	40.48	48.24	54.74	61.15 67.58	77.03	86.18	92.28	98.30 104 13	126.83	73 11	25.22	27.20	29.31	33.38	37.42	41.45	45.58	49.56	53.52	65.10 07.23	73.15	80.93	88.63	90.12 103.53	110.97	118.33	125.49	139.67	153.53	27.73
Ξ		Designation	Size	10 ³ /4 ^d	10 ³ /4	103/4	103/4	1034	103/4	103/4	103/4	103/4	103/4	103/4	103/4	103/4	10 ⁻ /4 10 ³ /4	₽ <i>731</i> ,d	123/4d	123/4d	12 ³ /4 ^d	123/4	123/4	123/4	123/4	123/4	123/4	12/4	123/4	123/4	123/4	123/4	123/4	123/4	123/4	123/4	123/4	14d

Copyright by the American Petroleum Institute Wed Apr 12 11:24:48 2000

		Ξ		3	3)	(4) Plain-	(5)	9)	6	(8)	6)	(10) V	(11) (12) Minimum Test Pressure ^b	(12) est Pressure	(13) () $e^{b} (kPa \times 100^{\circ})$	(14) 00°)	(15)		(16)
		Desi	ynation	Outside Diameter,	Wall Thickness,	End Weight,	Inside Diameter,	Grac	le A	Grade	в	1.5				eb and	e per c	Ċ	aha
	009 1556 57 4578 1450 71 81 92 99 100 1011 1525 551 1414 551 1414 55 141 551 1414 55 141 151 141 151 141 151 141 151 141 151 141 151	Size	Weight	D B(mm)	t (mm) ^a	w _{pe} (kg/m)	ط (mm)	Std.	Alt.	Std.	Alt.	Vrace X42	X46	X52	X56	X60	X65	X70	50
		4 d	30.93	355.6	5.3	45.78	345.0					74	81	92	66	105	114	1	3
	8.71 355.6 6.4 5.11 34.28 4.6 5.7 5.11 34.28 4.6 5.7 5.11 34.28 5.6 5.7 5.11 34.28 5.6 5.7 5.71 33.6 5.7 5.71 33.6 5.7 5.71 33.6 5.7 5.71 33.6 5.7 5.71 33.6 5.7 5.71 33.6 5.7 5.71	14d	32.23	355.6	5.6	48.33	344.4	I	I	I	1	77	2	95	103	110	611	=	8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4d	36.71	355.6	6.4	55.11	342.8	4	55	52	65	88	8	601	117	125	136	<u> </u>	47
561 555 73 573 573 573 573 573 573 573 573 573 573 573 573 573 516 516 516 513 517 516 513 517 516 513 517 516 513 5233 523 523 <t< td=""><td>45(6) 335(5) 77 3382 55 6 55 77 3381 77 3381 77 81 110 120 136<!--</td--><td>4d</td><td>41.17</td><td>355.6</td><td>7.1</td><td>61.02</td><td>341.4</td><td>50</td><td>62</td><td>58</td><td>72</td><td>66</td><td>108</td><td>122</td><td>132</td><td>141</td><td>153</td><td><u> </u></td><td>22</td></td></t<>	45(6) 335(5) 77 3382 55 6 55 77 3381 77 3381 77 81 110 120 136 </td <td>4d</td> <td>41.17</td> <td>355.6</td> <td>7.1</td> <td>61.02</td> <td>341.4</td> <td>50</td> <td>62</td> <td>58</td> <td>72</td> <td>66</td> <td>108</td> <td>122</td> <td>132</td> <td>141</td> <td>153</td> <td><u> </u></td> <td>22</td>	4d	41.17	355.6	7.1	61.02	341.4	50	62	58	72	66	108	122	132	141	153	<u> </u>	22
9.17 3556 5.7 7.42 3.86 6.6 7.7 9.1 1.21 1.23 1.32 1.33 1.	901 3355 81 7<	4	45.61	355.6	7.9	67.74	339.8	55	69	65	18	011	120	136	146	156	691	<u> </u>	8 3
54.7 355.6 9.5 81.08 350.6 9.3 81.08 350.6 9.3 81.08 350.6 9.3 81.08 350.6 11.1 $9.4.0$ 333.4 7 9 11.1 $9.4.0$ 333.4 7 9 11.1 <	84.57 35.56 10.3 81.08 35.06 11.1 94.30 33.14 13.1 13.14 13.15 13.14 13.15 13.14 13.15 13.14 13.14 13.15 13.14 13.14 13.15 13.14 13.14 13.15 13.14 13.15 13.14 13.14 13.15 13.14 13.15 13.14 13.15 13.14 1	4	50.17	355.6	8.7	74.42	338.2	61 (26	5	68	121	132	150	[9] 2	173	187	<u>.</u> 1	35
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6.844 3356 11.3 W_{21} 3334 T	4	54.57	355.6	9.5	81.08	336.6	99	83	LL	76	132	<u>4</u>	193 1	9/1	881	204	٦ ٢	55
7.38 3350 111 1036 3313 n		4	58.94	355.6	10.3	87.71	335.0	2	5	18	1 2	143 1 43	0 <u>7</u>	0/1	061	407 507	102	ה מ	55
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	4.50 4 5	0.005	11.1	94.30 100.86	233.4 221.2	9	16	<u> </u>	<u>c</u>	1 59	181	204	202	202	207	5	20
		4 2	97.10	0.000	4.11 F.C1	101.00	0.105	8	=	18	1 2	126	191	202	207	201	207	5	56
99.38 555.6 159 133.19 372.3 111 138 130 131 373.6 131.9 373.6 131.9 373.6 131.9 373.6 131.9 373.6 131.4 144.4 138 130 207	99.8 555.6 159 133.19 523.8 111 133 130 151 233 131.9 233.8 113.9 233.8 113.9 233.8 113.9 233.7 231.4 143.9 333.6 133.9 233.7 231.4 143.9 333.6 133.7 231.4 143.9 333.6 333.7 231.7	1	80.66	3556	14.7	12036	327.0	81	125	911	145	198	207	207	207	207	207	7	01
978 355.6 17.5 14.51 32.06 122 123 <th< td=""><td>9781 355.6 173 16591 3206 173 16591 3206 207 207</td><td>1</td><td>80.00</td><td>355.6</td><td>15.9</td><td>133.19</td><td>323.8</td><td>Ξ</td><td>138</td><td>130</td><td>161</td><td>207</td><td>207</td><td>207</td><td>207</td><td>207</td><td>207</td><td>2</td><td>01</td></th<>	9781 355.6 173 16591 3206 173 16591 3206 207	1	80.00	355.6	15.9	133.19	323.8	Ξ	138	130	161	207	207	207	207	207	207	2	01
		4	97.81	355.6	17.5	145.91	320.6	122	152	142	178	207	207	207	207	207	207	2	01
		14	106.13	355.6	19.1	158.49	317.4	133	166	155	193	207	207	207	207	207	207	Ň,	6
$ \begin{bmatrix} 122.65 & 355.6 & 22.2 & 182.52 & 311.2 & 155 & 193 & 193 & 207 & 20$	$ \begin{bmatrix} 122.65 & 355.6 & 22.2 & 182.52 & 311.2 & 155 & 193 & 181 & 193 & 207 & 20$	4	114.37	355.6	20.6	170.18	314.4	41	180	168	193	207	207	207	207	207	207	FN 8	52
		14	122.65	355.6	22.2	182.52	311.2	155	193	181	193	207	207	207	207	107	102	17	2 2
		4	130.85	355.6	23.8	194.74	308.0	166	661	<u>66</u>	56]	107	/07	107	107	107	102	4 6	: 5
		4	138.84	355.6	25.4	206.83	304.8	171	193	193	561	107	107	107	102	207	107	3 2	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4.*	140.74	0.000	7 oc	216.19	0.100	103	102	103	6	107	207	207	207	207	207	i X	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	• 4	170.21	355.6	31.8	253.31	292.1	193	193	193	193	207	207	207	207	207	207	20	5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$;	i	ļ	ŝ	ţ	60	00	ç	>
34.25 406.4 5.2 51.45 3960 32 39 57 66 63.13 3952.2 394 66 71 606.4 71 606.4 71.1 6091 392.2 394 48 56 70 66 63.13 393.6 39 48 56 70 66 71.1 6091 392.2 43 56 76 66 107 115 126 131 141 151 128 137 148 56 70 96 107 115 126 137 148 123 137 148 123 137 148 123 137 148 123 123 137 148 123 137 148 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123	34.25 406.4 52 51.45 3960 32 39 57 40 65 53.35 3950 32 39 57 40 66 71 691 392.2 314 56 53.35 3956 39 56 71 84 95 107 115 123 47.17 406.4 7.1 6991 392.2 43 54 51 63 86 94 107 115 123 106.4 111 109.292 3936 39 48 51 56 70 96 107 115 123 106.4 111 108.20 3874 58 116 116 111 1111 108.20 3874 58 115 126 131 141 167 178 77.79 406.4 112 11233 3874 58 77 96 107	16 ^d	31.75	406.4	4.8	47.54	396.8	53	37	8	1 3	88 8	63	21		<u></u>	3 3		<u>و</u> ک
3691 4064 5.6 55.35 395.2 34 43 54 55 77 84 95 100 101 101 42.05 406.4 7.1 60.64 7.1 60.64 7.1 60.64 7.1 60.64 7.1 60.64 7.1 60.4 7.1 60.4 7.1 60.4 7.1 61.1 393.6 390.6 48 61 56 70 96 105 119 128 137 144 57.52 406.4 8.7 85.3 389.0 53 67 62 78 106 116 131 141 151 153 134 67.62 406.4 11.1 108.20 387.4 58 77 68 85 156 154 166 173 141 151 164 77.79 406.4 11.1 108.20 387.4 58 156 154 165 178 193 173 <	3691 4064 5.6 55.35 395.2 34 43 59 50 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 71 84 55 77 84 95 101 115 121 77.52 406.4 7.1 66.4 7.1 66.4 103 130.5 390.6 48 61 56 70 96 105 113 141 151 77.52 406.4 10.3 100.61 385.4 58 75 68 85 115 126 131 141 151 77.59 406.4 11.0 115.77 382.6 - - 126 131 141 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151	16 ^d	34.25	406.4	5.2	51.45	396.0	32	<u>6</u>	37	6 6	28	80		88	69 70	£ 3	= -	<u>ع</u> 2
42.05 4064 6.4 0.5113 395.5 55 55 55 56 66 67 66 67 66 67 <th67< th=""> <th67< th=""></th67<></th67<>	42.05 406.4 0.4 $0.61.5$ 393.5 39.5 45 51 53 51 53 51	2	36.91	406.4	5.6	55.35	395.2	¥ 8	4	<u>8</u>	23	8 6	4 20	8 8	R 2		<u></u>		1 8
47.17 4064 7.1 0.991 592.2 43 51 0.6 7.1 0.064 7.1 0.064 7.1 0.064 7.1 0.064 7.1 0.064 7.1 0.064 7.63 390.6 48 61 56 70 0.6 119 113 119 113 154 165 178 193 7.62 406.4 11.2 100.61 385.8 $$ $$ 125 136 154 165 178 193 193 107 119 113 154 167 167 178 192 207	4711 4064 7.1 60.9 7.10 60.9 7.10 60.9 7.1 60.4 7.1 60.4 7.1 60.4 7.1 60.4 7.1 60.4 7.1 60.4 7.1 60.4 7.1 60.4 7.6 380.6 4.8 61 56 70 66 110 110 110 110 110 110 110 120 110 100 <	10g	42.05	406.4	6 .4	63.13	393.6 202 0	<u>s</u> , :	¥ ;	6 :	R (1 70	40 C	5	5	22	134		3 2
52.27 4064 7,9 7,103 590.0 43 01 05 01 03 01 03 01 03 01 03 01 03 77.79 406.4 11.9 115.77 382.6 - - - 124 167 167 163 178 103 82.77 406.4 11.9 115.77 382.6 177 193 167	52.27 406.4 7.9 7.03 590.0 48 01 05 10 111 112 111 111 111 111 112 113 114 113 114 113 114 113 114 113 114 113 114 113 113 114 113 113 114 113 114 113 113 114 113 113 114 113 113 114 113 114 113 113 114 113 114 113 113 114 113 113 114 113 113 114 113 114 113 115 113 114 113 114 113 114 113 113 114 113 114 113 114 113 114 113 114 113 114 115 116 114 115 114 115 114 115 114 115 114 115 116	2	47.17	406.4	1.1	16.69	2769	.	¥ :	- - -	88	8 8	<u> 1</u>	01	961	C71	148	. 2	t 5
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	<u>; 1</u> 2	52.27	406.4	5.0	11.03	0.045	4 8 8	5	R 5	2 ¢	s ž	115	121	071	2	17	:	2 2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9	20.12	400.4	9.V	80.32	0.695 287 A	с ў	6 6	7 89	e 8	311	126	143	54	165	178	: =	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 1	07-70 97-70	406.4	10.3	100 61	385.8	3	2	3	3	125	136	154	167	178	193	20	5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		70.10	406.4	111	108 20	384.2	89	85	61	8	134	147	167	180	192	207	R	E
82.77 406.4 12.7 123.30 381.0 77 97 90 113 154 168 190 205 207	82.77 406.4 12.7 123.30 381.0 77 97 90 113 154 168 190 205 207 92.66 406.4 14.3 138.27 377.8 87 109 102 127 173 189 207 207 207 207 207 112.51 406.4 17.5 167.83 371.4 107 134 125 156 207<	2 9	61.17	406.4	6.11	115.77	382.6		ł	ł	I	<u>4</u> 4	158	178	192	206	207	ភ	S
92.66 406.4 14.3 138.27 377.8 87 109 102 127 173 189 207 <t< td=""><td>92.66 406.4 14.3 138.27 377.8 87 109 102 127 173 189 207 <t< td=""><td>2 9</td><td>82.77</td><td>406.4</td><td>12.7</td><td>123.30</td><td>381.0</td><td><i>LT</i></td><td>76</td><td>8</td><td>113</td><td>154</td><td>168</td><td><u>8</u></td><td>205</td><td>207</td><td>207</td><td>ក</td><td>5</td></t<></td></t<>	92.66 406.4 14.3 138.27 377.8 87 109 102 127 173 189 207 <t< td=""><td>2 9</td><td>82.77</td><td>406.4</td><td>12.7</td><td>123.30</td><td>381.0</td><td><i>LT</i></td><td>76</td><td>8</td><td>113</td><td>154</td><td>168</td><td><u>8</u></td><td>205</td><td>207</td><td>207</td><td>ក</td><td>5</td></t<>	2 9	82.77	406.4	12.7	123.30	381.0	<i>LT</i>	76	8	113	154	168	<u>8</u>	205	207	207	ក	5
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16	92.66	406.4	14.3	138.27	377.8	87	109	102	127	173	189	207	207	207	207	Ä	5
112.51 406.4 17.5 167.83 371.4 107 134 125 156 207	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16	102.63	406.4	15.9	153.11	374.6	76	121	113	141	192	207	207	207	207	207	ਕ	59
122.15 406.4 19.1 182.42 368.2 116 145 136 169 207	122.15 406.4 19.1 182.42 368.2 116 145 136 169 207	16	112.51	406.4	17.5	167.83	371.4	107	134	125	156	207	207	207	207	207	207	5	2.5
131.71 406.4 20.6 195.98 365.2 126 157 147 183 207	131.71 406.4 20.6 195.98 365.2 126 157 147 183 207	16	122.15	406.4	1.91	182.42	368.2	116	145	136	169	207	207	207	207	102	202	510	38
141.34 406.4 22.2 210.33 362.0 136 169 158 193 207 207 207 207 207 207 207 207 207 207	141.34 406.4 22.2 210.33 362.0 136 169 158 193 207	16	131.71	406.4	20.6	195.98	365.2	126	157	147	183	207	207	207	207	207	702	57	5 8
150.89 406.4 23.8 224.55 358.8 145 182 169 193 207 207 207 207 207 207 207 207	150.89 406.4 23.8 224.55 358.8 145 182 169 193 207 207 207 207 207 207 207 160.20 406.4 25.4 238.64 355.6 155 193 181 193 207 207 207 207 207 207 207	16	141.34	406.4	22.2	210.33	362.0	136	169	158	193	207	207	207	207	102	707	51 7	5 5
	160.20 406.4 25.4 238.64 355.6 155 193 181 193 207 207 207 207 207 207	16	150.89	406.4	23.8	224.55	358.8	145	182	169	193	207	207	207	207	207	207	1	2 !

_ -

SPECIFICATION FOR LINE PIPE

78				-	-										/	API	SP	ECI	FICA	TIO	N 5	L																
	(17)	-		X80	207	207	207	90	٥ <u>ر</u> 115	131	146	701	195	207	207	207	207	207	202	107	207	207	202	107 202	202	107	109	120	154	170	185	201	202	207	207	502	207	207
inued	(16)		-	X70	207	207	207	95	6 <u>8</u>	114	128	147	171	185	200	207	207	207	207	207	207	207	207	202	207	707	8 ș	601	135	149	162	176	2 2	207	207	202	207	207
s)Cont	(15)		Ę	Viaue X65	207	207	207	70	60	105	119	145	158	172	185	196 207	207	207	207	207	207	207	207	207 207	207	107	68	112	125	138	151	164	189	202	207	207	207	207 207
tric Unit	(14)	0℃)	- C	X60	207	207	207	42	58	86	011	771	146	158	171	C []	207	207	207	207	207	207	207	102	207	/07	82	<u> </u>	191	128	139	151	501 174	186	207	202	207	207 207
1 80 (Me	(13)	e ^b (kPa × 10	t C	X56	207	207	207	89	8 Q	6	103	125	136	148	160	171	205	207	207	207	207	207	207	107	207	107	<i>11</i>	80	108	611	130	141	163	174	196 962	202	207	207 207
Through	(12)	Minimum Test Pressure ^b (kPa × 100°)	, C	X52	207	207	207	63	50 74	85	95	60 Y	127	137	148	9C1 691	61	207	207	207	207	207	207	202	207	/07	17	200	8 8	III	121	131	151	161	182	207	207	207 207
izes 6⁵/ ₈	(11)	Minimum T	t t	X46	207	207	207	25	8 E	75	88 24	3 2	112	121	131	141	168	187	506 507	107	207	207	207	107	207	107	59 f	7 0	88	86	107	116	134 134	143	161	197	207	207
es for Si	(10)		- C	X42	207	207	207	ç	7 99	89	76 95	83	103	111	120	136	154	171	188	C07	207	207	207	202	207	707	57	8 6	2 8	68	61	9 <u>9</u>	177	130	147	180 180	196	207
ressur	6		le B	Alt.	193	661	6 <u>6</u>	20	84	50	8	88	75		88	101	113	125	138	161	176	189	193	6	61	561	39	1	58	62	68	6	<u></u>	90	102	125	136	147
Test P	(8)		Grade B	Std.	192	193	193	00	8 £	9	45 5 5	2 ¥	619		70	1 20	8	101	Ξŝ	171	141	151	161	181	161	641	32	R =	45	50	54	5	3	72	55 S	8	601	118
s, and	ε		le A	Alt.	193	193	193 193	C2	7 8	6 4 8	48	4 Ç	65	I	76	8	8	107	611	140	151	161	172	193	193	(<u>)</u>	88	2 ç	f 8	53	58	3	8	LL	22	107	116	126
Weight	(9)		Grade A	Std.	165	174	193	УĽ	9 P	8 8	б, (4 7 8	52	ł	61	8	5	86	95 57	501 CII	121	130	138	141	163	7/1	27	1.5	66	, (47	2	ţ	62	07	; S	93	101 101
nensions,	(2)		Inside Diameter,	a (mm)	352.4	349.2	342.8	V 2.VV	445.8	444.2	442.8	7.144	438.0	436.4	434.8	431.6	428.4	425.2	422.0	415.8	412.6	409.4	406.2	0.cn+	396.6	4.060	496.8 405 3	2.064	492.2	490.6	489.0	48/.4	463.0	482.6	479.4	473.0	469.8	466.8 463.6
e Pipe Dir	(4)	Plain-	End Weight,	w _{pe} (kg/m)	252.61	266.45 200.17	293.76	53 53	62.34 62.34	71.12	78.77	06.18 96.18	104.84	113.46	122.05	139.15	156.11	172.95	189.67	22.002	238.03	254.25	270.34	302.14	317.85	44.000	69.38 70.15	01.67	97.43	107.12	116.78	126.41	145.58	155.12	174.10	211.68	230.27	247.60 265.95
in-End Lin	(3)	11.717	wall Thickness,	t (mm) ^a	27.0	28.6	31.8	9	2 Q	6.4	7.1		9.5	10.3	1.1	11.7	14.3	15.9	17.5	20.6	22.2	23.8	25.4	28.6	30.2	0.16	5.6	7 0.4	7.9	8.7	9.5	10.3	6.11	12.7	14.3 15 0	17.5	1.61	20.6 22.2
Table E-1CPlain-End Line Pipe Dimensions, Weights, and Test Pressures for Sizes 65/8 Through 80 (Metric Units)Continued	(2)	-1	Diameter,	(mm) ^a	406.4	406.4	406.4	0.57.0	457.0	457.0	457.0	457.0	457.0	457.0	457.0	457.0	457.0	457.0	457.0	457.0	457.0	457.0	457.0	457.0	457.0	n./c+	508.0	0.905	508.0	508.0	508.0	508.0 508.0	508.0	508.0	508.0	508.0	508.0	508.0 508.0
Table			nation	Weight	169.43	178.72	16.91	35 76	41.59	47.39	53.18	64.87	70.59	76.29	82.15	93.45	104.67	115.98	127.21	149.06	160.03	170.92	181.56	202.75	213.31	10.677	46.27 5 1 1 2	51.2C	65.60	72.21	78.60	84.96 0 5 10	97.83	104.13	116.67	141.90	154.19	166.40 178.72
	Ξ		Designation	Size	16	16	16	184-	184	18d	184	0 00	18	18	8 2	<u>e</u> 81	18	18	<u>8</u> 2	o 22	18	18	8 2	<u> </u>	18	<u>o</u>	50g 50g	- PO	ន	20	88	3€	202	50	2 2	88	20	88

Copyright by the American Petroleum Institute Wed Apr 12 11:24:51 2000

_

										-										-			-													~
(13)		Srade X80	207	207	207	207	207	207	66	114	126	154	169	183	161	207	207	207 207	207	207	207	207	207	207	207	207	207	207	104	115	128	154 154	167	180	193	
(19)		Grade X70	207	207	202	207	207	207	87	66 ;	110	135	148	09	105	197	207	207	207	207	207	207	207	207	207	207	207	207	16	101	113	124	147	158	169	
(15)		Grade X65	207	207	102	207	207	207	81	92	102	114	137	149	<u>8</u>	1/2	206	207	207	207	207	207	207	207	207	207	207	207	85	94	104	115	120	147	157	
(14)	() ()	Grade X60	207	207	102	207	207	207	75	85 2	56 j	60 YE	127	137	148	671 691	190	207	207	207	207	207	207	207	207	207	207	207	78	87	96	106	110	135	145	
(13)	⁶ (kPa × 10	Grade X56	207	207	107	207	207	207	70	80	88	86 108	118	128	138	140	178	198 207	207	207	207	207	207	207	207	207	207	207	73	; 1 8	6	83	117	126	136	
(12)	st Pressure	Grade X52	207	207	102	207	207	207 207	65	74	82	201	110	119	128	147	165	184 207	207	207	207	207	207	207	207	207	207	207	68	75	84	92 191	10 10	117	126	
(11)	Minimum Test Pressure ^b (kPa × 100°)	Grade X46	207	207	2012	207	207	207 207	57	65	55 :5	<u>7</u> 8	6	105	113	130	146	162	195	207	207	207	207	207	207	207	207	207	9	38	74		8 8	<u>5</u>	111	
(10)	- I	Grade X42	207	207	207	207	207	207 207	52	90	99	81	68	96	104	118	133	148	178	192	207	207	207	207	207	207	207	207	55	; 19	68	74	28	95	102	
(6)	le B	Alt.	169	181	180	189	189	189 189	36	41	6	21.25	619		72	82	92	103	123	134	144	165	172	172	172	172	172	172	38	;4	47	22	ร เ	99	I	
(8)	Grade B	Std.	136	145	4C1	172	181	189 189	29	33	37	41	9 9		28	- 3	74	22	g 8	107	115	132	140	148	961 165	172	172	172	30	3 45	38	41	45	53	1	
ε	e A	Alt.	145	155	<u>6</u>	184	189	189 189	31	35	66 :	4 4	5 5 7	1	62	2	79	88 5	102	114	123	701 141	150	158	107	172	172	172	5	37	6	4 :	48	- 2 8		
(9)	Grade A	Std.	116	124	130	41 147	155	162 171	25	28	32	35	6	Ι	50	56	63	92 8	85	62	66 y	611 113	120	127	134	148	155	162 169	X	38	32	36	66	45	1	
(2)	Inside Diameter,	(mm)	460.4	457.2	454.0	447.6	444.4	441.4 438.2	547.8	546.2	544.8	543.2	540.0	538.4	536.8	533.6 533.6	530.4	527.2	520.8	517.8	514.6	508.2	505.0	501.8	498.6 495 4	492.4	489.2	486.0 482.8	6 203	595.8	594.2	592.6	591.0 580.4	587.8	586.2	
(4)	Plain- End Weight,	w _{pe} (kg/m)	284.18	302.28	320.26	355.83	373.43	389.81 407.17	76.42	87.21	96.63	107.36	128.73	139.37	149.97	160.55 171.09	192.08	212.95	254.30	273.51	293.87	314.11 334.23	354.22	374.08	393.81 413.47	431.69	451.06	470.30 489 41	76.20	105.56	117.30	129.00	140.68	163.93	175.51	
(9)	Wall Thickness,	r (mm) ^a	23.8	25.4	27.0	30.2	31.8	33.3 34.9	5.6	6.4	7.1	6.7 5 0	9.5	10.3	1.1	11.9	14.3	15.9	C./1	20.6	22.2	23.8 25.4	27.0	28.6	30.2 31 8	33.3	34.9	36.5 38 1		0.4 7.1	6.1	8.7	9.5	C.01	6.11	
(2)	Outside Diameter,	D (mm) ^a	508.0	508.0	508.0	508.0 508.0	508.0	508.0 508.0	559.0	559.0	559.0	559.0	559.0	559.0	559.0	559.0 559.0	559.0	559.0	0.655	559.0	559.0	0.666	559.0	559.0	559.0 550.0	559.0	559.0	559.0 550.0		610.0	610.0	610.0	610.0	010.0 610.0	610.0	×1×1×
	Designation	Weight	190.96	202.92	214.80	220.78	250.31	261.86 273.51	50.94	58.07	65.18	72.27	86.61	93.63	100.86	107.85	128.67	142.68	09.0C1 170.71	183.75	197.41	211.00	237.48	250.81	264.06	289.88	302.88	315.79	11.020	71.18	78.93	86.91	94.62	10.22	117.86	
Ξ	Design	Size	50	20	88	20	20	20 20	22d	22d	22d	22	12	52	22	2 2	12	22	35	12	22	22	12	22	52	52	22	ដ្	; ;	-47 2 dd	52	24	54	5 75	5 7	5

SPECIFICATION FOR LINE PIPE

Copyright by the American Petroleum Institute Wed Apr 12 11:24:53 2000

- -

79

-- - -----

(13)	Grade X80	207 207 207 207 207 207 207 207 207 207	207 207 207 207 207 207 207	96 101 119 119 119 120 202 207 207 207 207 207 207 207 207 2	89 110 121 133 155 156 157 156 159
(16)	Grade X70	50 50 50 50 50 50 50 50 50 50 50 50 50 5	201 201 201 201 201 201 201 201 201 201	88 200 200 200 200 200 200 200 200 200 2	78 87 107 116 116 128 128 128 128 128 128 128 128 128 128
(15)	Grade X65	207 207 207 207 207 207 207 207 207 207	207 207 207 207 207	78 87 81 116 116 115 126 126 126 126 207 207 207 207 207 207 207 207 207 207	2 4 3 8 1 2 4 5 8 8 3 7 3 8 4 5 5 4 5 5 4 5 5 5 4 5 5 5 4 5 5 5 5
(14) 0°¢)	Grade X60	207 207 207 207 207 207 207 207	207 207 207 207 207 207	88 88 88 88 88 88 88 88 88 88 88 88 88	8 2 8 8 2 8 8 2 8 13 2 15 8 8 19 8 8 2 8 13 3 2 19 19 19 19 19 19 19 19 19 19 19 19 19
(13) b (kPa × 10	Grade X56	181 207 207 207 207 207 207 207	207 207 207 207 207 207 207	67 83 1117 1117 1117 1117 1117 1117 1117	62 85 109 116 116 116 130
(12) est Pressure	Grade X52	168 185 207 207 207 207 207 207	207 207 207 207 207 207	63 77 85 85 85 101 101 116 116 116 116 116 116 207 207 207 207	58 57 77 77 77 77 75 75 75 75 75 75 75 75
(11) (12) (13) (Minimum Test Pressure ^b (kPa × 100°)	Grade X46	149 176 200 200 200 200 200 200 200 200 200 20	207 207 207 207 207 207	55 68 73 88 73 88 75 10 78 75 11 10 88 75 88 88 75 88 88 75 88 88 75 88 88 75 87 75 87 87 87 87 87 87 87 87 87 87 87 87 87	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
(10)	Grade X42	136 150 176 207 207 207 207 207	207 207 207 207 207 207	55 56 69 113 113 113 113 113 113 113 113 113 11	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
(6) (9)	Alt.	94 113 132 151 151 158 158 158	158 158 158 158 158 158	88 88 87 9 9 9 8 8 8 8 9 8 9 8 8 8 8 8 8	864 8 8 8
(8) (8) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9	Std.	75 83 90 98 105 113 121 128 128 136	143 151 158 158 158 158 158 158	102288343881 49 42833338	82 2 3 3 2 3 2
(j) (j)	Alt.	81 89 97 105 113 121 130 137 137	154 158 158 158 158 158	88 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	8 2 8 4 8 8 2
(6) (6) (7) (6) (6) (6) (7) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	Std.	65 97 110 110 110	123 130 136 149 155 155	228881418288888	2 2 2 3 3 3 5 2 3
(5) Inside Diameter,	<i>d</i> (тт)	578.2 575.0 568.8 568.8 556.6 556.0 556.0 552.8	549.6 546.4 543.4 537.0 533.8 533.8 533.8	647.2 648.8 648.8 644.2 641.0 641.0 641.0 633.4 633.4 633.4 633.4 633.4 633.4 633.4 633.4 633.4 633.8 633.4 633.8 633.4 633.8 633.4 633.8 643.8	698.2 695.2 695.2 692.0 692.0 687.2 687.2 687.2 687.2
(4) Plain- End Weight,	wpe (kg/m)	232.94 255.69 255.69 321.79 341.79 346.17 386.17 388.17	431.80 453.42 453.57 494.95 516.20 537.33 537.33	103.15 114.31 127.04 139.73 155.39 165.02 165.02 175.02 175.02 175.02 2227.70 2277.70 2077.70	111.20 123.24 136.97 156.67 164.34 164.34 177.98 191.58 205.15 218.69 218.69
(3) Wall Thickness,	t (mm) ^a	15.9 17.5 20.6 23.3 23.2 27.0 8 23.6 23.6	30.2 31.8 34.9 36.5 38.1 33.1	64 7.1 8.7 8.7 8.7 11.1 1.5 19.5 19.5 19.5 19.5 20.5 19.5 20.5 22.2 20.5 22.2 20.5 22.2 20.5 22.2 20.5 22.2 20.5 22.2 20.5 20.5	6.4 7.9 8.7 8.7 1.0 3.8 7.9 1.1 1.1 1.1 1.1 1.2 1.3 4.3
(2) Outside Diameter,	D (mm) ^a	610.0 610.0 610.0 610.0 610.0 610.0 610.0 610.0	610.0 610.0 610.0 610.0 610.0 610.0	660.0 660.0	711.0 711.0 711.0 711.0 711.0 711.0 711.0 711.0 711.0 711.0
ation	Weight	156.03 171.29 186.23 201.09 2216.10 231.03 245.64 274.84	289.44 303.71 317.91 332.25 346.50 374.31	68.75 77.18 85.60 85.60 94.26 102.63 1110.98 1110.98 1110.98 1110.98 1136.17 1137.17 1	74.09 83.19 92.26 101.61 110.64 113.89 137.90 14.85 164.85
(1) Designation	Size	24 25 25 25 25 5 5 5 5 5 5 5 5 5 5 5 5 5	24 54 55 55 55 55 55 55 55 55 55 55 55 55	^ង និនននននននននននននននន	88 88 88 88 88 88 88 88 88 88 88 88 88

API SPECIFICATION 5L

_ _ _

-- - ----

Copyright by the American Petroleum Institute Wed Apr 12 11:24:54 2000

															-									_													-	
(11)		Grade	X80	207	107	207	207	207	83	26 20	611 113	124	134	<u>4</u> 2	165	186	202	201	207	107	202	207	207	207	22	78 87	96	<u>8</u>	176	135	145	155	104	207	207	207		
(16)		Grade	X70	207	107	207	207	207	72	50	R 8	109	811	121	145	163	181	202	207	202	202	207	207	207	103	68 76	85	93 50	102	611	127	136	761	187	203	207	107	
(12)		Grade	X65	198	107	207	207	207	68	76 84	\$ S	<u>, 10</u>	109	118	134	151	168	201	207	207	207	207	207	207	107	63 71	62	87	8 <u>5</u>	701	118	126	141 158	174	189	205	107	
(14)	0¢)	Grade	X60	183	661 705	107	207	207	62	51	58	3 6	101	116	124	139	155	186	201	207	102	207	207	202	707	58	22	80	88	¥ 5	60	116	131	160	174	189	502	
(13)	o (kPa × 10	Grade	X56	171	186	201	207	207	58	3 8	77	87	94	101	116	130	145	4C1	188	203	102	207	207	207	107	25 T	88	74	18	88	102	109	122	051	163	176	8	
(12)	st Pressure	Grade	X52	158	173	18/ 201	207	207	54	5) 9 7	t 18	88	6	101	121	134	161 161	174	188	202	207	207	207	102	50	3.8	70	92	7. 8	32	101	113	071 871	151	2 2 2	1/0	
(1)	Minimum Test Pressure ^b (kPa × 100°)	Grade	X46	140	153	105	191	204	48	2	56	6 22	11	88	60 20	107	611	151 143	154	167	178	202	207	207	707	45 20	292	61	67	<u></u> 22	s 28	68	<u>8</u> :	122	131	145	156	
(10)	2	abert	X42	128	139	151	701	186	43	49	2	8 (C	20	76	18	86	601	119	141	152	163	185	<u>8</u>	206	207	41	.	56	(I	99 F	76	81	92 92	102	122	132	143	
(6)		le B	Alt.	68	67	105		130	30	34	38	4	;	53	15	89	75	88	86	105	113	121	136	143	151	88 8	7 Se		43	1 9	R	56	63 2:	۲ ¢	85	92	66	
(8)		Grade B	Std.	11	11	8 8	32	103	24	27	8	12	8	42	୧	5 t	61	8 £	4 62	84	83	8 <u>5</u>	<u>8</u>	114	121	23	3 X		34	8	\$	45	51	26	88	74	<u>79</u>	
6		еA	Alt.	76	83	88	101	Ξ	25	29	32	30	5	45	5	280	65	12	: 28	8	67	103	116	123	130	24	8 9	8 1	37	;	5	48	5	5	62	<u>79</u>	85	
(9)		Grade A	Std.	61	9 9	21	11	68	21	23	25	31	5	37	;	4 4	52	57	70	72	78		8°	8	103	61	77	5	29	1	2	39	43	4 8	28 2	63	68	
(2)	Incide	Diameter,	a (mm)	676.0	672.8	8.699 2	666.0 663.4	660.2	749.2	747.8	746.2	744.6	741.4	739.8	738.2	733.4	730.2	727.0	720.8	717.6	714.4	711.2	704.8	701.6	698.4	800.2	707 2	795.6	794.0	792.4	780.5	787.6	784.4	781.2	774.8	771.8	768.6	
(4)	Plain-	Enku Weight,	w _{pe} (kg/m)	299.28	325.89	350.72	377.08	429.44	119.25	132.17	146.91	19.191	190.93	205.54	220.12	263.67	292.54	321.29	376.63	405.00	433.26	461.38	489.38	544.99	572.61	127.30	141.10	172.56	188.24	203.88	219.50	250.64	281.65	312.54	343.30	402.54	432.93	
(3)	11-745	wall Thickness,	t (mm) ^a	17.5	19.1	20.6	22.2	25.4 25.4	64	7.1	7.9	8.7	6.9 10.3	1.11	11.9	12.7	15.9	17.5	19.1 20.6	22.2	23.8	25.4	21.0	30.2	31.8	6.4	7.1	r - 30	9.5	10.3	1.11	12.7	14.3	15.9	17.5 191	20.6	22.2	
(2)		Uutside Diameter,	D (mm) ^a	711.0	711.0	711.0	711.0	711.0	0 692	762.0	762.0	762.0	762.0	762.0	762.0	762.0	762.0	762.0	762.0	762.0	762.0	762.0	762.0	762.0	762.0	813.0	813.0	813.0	813.0	813.0	813.0	813.0 813.0	813.0	813.0	813.0 813.0	813.0	813.0	
_		nation	Weight	200.68	218.27	235.78	253.48	2/1.10	70.43	89.19	98.93	108.95	118.65	138.29	147.92	157.53	196.08	215.38	234.29	272.17	291.14	309.72	328.22	365.56	383.81	84.77	95.19	90° 911	126.66	136.99	147.64	46/CI	188.70	209.43	230.08 250.31	270.47	200.86	
Ξ		Designation	Size	38	3 <u>8</u>	28	28	8 8	por	b P D D D D D D D D D D D D D D D D D D	8	30	02 02 02 02	88	30	30	88	30	30	9 6	8 8	8	88	8 8	30	32d	32d	36	18	32	32	22	18	32	;; ;;	32	5	

- ----

SPECIFICATION FOR LINE PIPE

81

Copyright by the American Petroleum Institute Wed Apr 12 11:24:56 2000

32																AF	21 S	PE	CIF	CAT	ION	5L					~														
(1)			Grade X80	207	207	207	/07	73	82	16	8	601 811	127	137	146	<u>15</u>	183	207	207	207	207	207	107	207	207	60	35	86	23	501 511	120	129	138	35	C 1	207	207	207	207	102	207
(16)			Grade X70	207	207	207	707	2	72	80	88	8 E	112	120	127	143	160	192	207	207	207	207	102	207	207	là.	89	75	5 S	<u>8</u> 8	105	113	121	9 <u>5</u> 1	101	181	961	207	207	102	207
(15)			Grade X65	207	207	207	707	59	67	74	18	6 8	104	111	119	133	148	201	192	207	207	202	202	207	207	ý	3 33	70	1	\$ 5	86	105	112	<u></u> 1	<u>1</u>	168	182	196	207	102	207
	00 c)		Grade X60	207	207	207	107	54	61	89	<u>e</u> 2	7 68 8 0	8	103	110	123	151	5	178	192	205	202	202	207	207	\$	88	65	= F	: 2	5	76	103	110	25	155	168	181	194	102	201
1 00 (IVIE (13)	e ^b (kPa × 1		Grade X56	207	207	207	707	51	57	3 S	5 4	2 S	86	96	102	115	171	153	166	178	192	204	202	207	207	48	5 5	99	8 ?	7 6 2	SS	6	8 5	201	171	145	156	169	181	205	207
(12)	Minimum Test Pressure ^b (kPa \times 100 ^c)	. .	Grade X52	207	207	207	107	48	53	<u>ନ</u> :	3 8	: F	83	68	95	107	611	142	154	166	178	6 <u>8</u> 1	207	207	207	45	20	56	10 9	8 6	62	84	8 3	<u>1</u>	173	134	145	157	168	6.1	202
(2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)	Minimum 7		Grade X46	189	200	207	107	42	47	22	8 5	3 %	74	62	84	4	601 911	126	136	147	157	176	189	661	207	40	45	5 0	¥ 5	r 2	70	74	62	\$ 8	6	611	129	138	149	891	178
(10)		-	Urade X42	173	183	194 203	CU1	39	43	84 <u>2</u>	70	59	67	72	26	98 88	8 S	115	125	134	4	201	172	182	192	36	41	5	5 S	t S	63	68	72	58	8 8	601	118	127	136	151	163
6		Grade B	Alt.	120	127	134	ŧ	27	88	33	40	2	47	1	53	85	64	2 08	86	93	83	<u>8</u>	120	126	133	25	28	31) ș	₽	4	1	8	96	38	75	81	20 20 20	<u> 4</u> 5	101	113
(8)		Gra	Std.	96	102	107	3	21	25	17	6	1	37		(8 8	с с	3	69	74	80	88	8	101	106	20	23	25	8	R	35	1	6 4	f 6	35	61	3	2 8	<u>د</u> ا	58	8
. 6		Grade A	Alt.	103	601	121	17	23	52	78	7	5	40	I	45	2 2	r (9	8	74	80	85	16	103	108	114	21	24	27	2	5	38	:	4 7 9 7 9	5	565	65	25	с ;	818	38	16
9		Gra	Std.	82	88	6 5	Ĩ.	18	55	5	28	1	32		37	41	, 8	5	59	2	86	c F	82	87	16	17	61	21	1%	8	30	1	\$ 8	64	; 8	52	\$	5	33	5	78
(2)		Diameter,	a (mm)	759,0	755.8	752.6 749.4		851.2	849.8	846.2 846.6	845.0	843.4	841.8	840.2	838.6	833.4 827.7	829.0	825.8	822.8	819.6	816.4	810.0	806.8	803.6	800.4	901.2	8.668	898.2	895.0	893.4	891.8	890.2	885.0 885.4	882.2	879.0	875.8	872.8	0.608	863.7 863.7	860.0	856.8
(4)	Plain-	Weight,	(kg/m)	523.33	553.22	582.98 612.61		135.35	150.03	183 50	200.18	216.84	233.46	250.05	266.61	H0.667	365.31	397.95	428.44	460.85	493.12 575 77	557.29	589.19	620.96	652.60	143.24	158.79	1/6.52	211.90	219.54	247.15	264.72	12.202	352.14	386.88	421.50	453.84	12.004	14.220	590.58	624.45
(3)	Well	Thickness,	(mm) ^a	27.0	28.6	30.2 31.8		6.4	1.7	C 8	9.5	10.3	1.11	11.9	12.7	15.0	17.5	19.1	20.6	22.2	25.8	27.0	28.6	30.2	31.8	6.4	1.1		9.5	10.3	1.11	9.11 7 2 2 2	14.3	15.9	17.5	19.1	50.6 20.6	0.27 0.26	25.4 25.4	27.0	28.6
(2)	Outside	Diameter,	(mm) ^a	813.0	813.0	813.0		864.0	864.0 864.0	864.0	864.0	864.0	864.0	864.0	864.U	864 0	864.0	864.0	864.0	864.0	864.0 864.0	864.0	864.0	864.0	804.0	914.0	914.0	014.0	914.0	914.0	914.0	914.0	914.0	914.0	914.0	914.0	914.0 014.0	014.0	914.0	914.0	914.0
		Designation	Weight	350.90	370.96	410.51		11.06	101.19	123.65	134.67	145.67	157.00	167.95	200 JON 20	222.78	244.77	266.33	287.81	309.55	17.100	373.59	394.99	416.31	431.21	95.45	107.20	131.00	142.68	154.34	166.35	16/11	212.70	236.13	259.47	282.35	01.CUE	361 25	373.80	396.27	419.02
Ξ		Desig	Size	32	5 5 7	7 CE		34d	74 P	5 2	34	34	83	<u></u>	\$ 2	5 2	34	8	¥ 2	<u></u>	¥ %	8	34	83	¥,	36 ^d	36d	R %	36	36	83	8 8	8 8	36	36	36	<u></u>	2 X	8 %	36	36

Copyright by the American Petroleum Institute Wed Apr 12 11:24:57 2000

													5	PEC	IF(C			ОН		: []	rc																_
(11)		Grade	X80	207 207	5	- 80 80	98	90	114	181	147	163	961	207	207	207	207	207	207	107	77 28	3 6	101	801	124	140	<u>8</u> E	186	201	207	107 LUZ	207	207	207		88 88	8
(16)		Grade	X70	207 207	i	1 62	85	93 100	<u>8</u>	114	128	143 157	172	185	200	207	207	207	207	103	68 19	74	88	85	<u>8</u>	122	<u>8</u>	163	176	<u>8</u>	507 202	507	207	202		78	
(15)		Grade	X65	207 207		99 73	62	98 98	56 9 8	106	119	132	159	172	185	199 707	207	207	207 207	107	63 70	2 2	82	22	t 10	113	126	151	1 <u>6</u> 1	176	201	207	207	207		28	ŝ
(14)	100-1)	Grade	X60	207 207		68 68	74	79 22	\$ S	7 86 7	110	123	CE 147	159	172	184	201	207	207	107	58	58	76	81	88	105	116	139	151	69 1	1/4	188	207	207	2	58	•
(13)	(Kra ×	Grade	X56	207 207		57	; 89	74	80	65 67	103	107	137	148	160	172	185 194	205	207	107	54	8 2	70	92	5 6 6	86	60	611	141	152	F01	185	195	206	2	52	ţ
(12)	Minimum lest Pressure	Grade	X52	207 207		5 5 5	3 63	69 1	66	s 8	95	90 100	116	127 138	149	159	181 181	161	202	107	50	8 2	53	۶ ۶	e 18	16	<u>10</u>	12	131	141	151	172	181	192 202	707	83 X	
(11)		Grade	X46	188 198		4 %	3.8	[9	65 5	5 25	84	45 ç	103	112	132	141	0¢1 9¢1	169	178	181	45 5	64 42	28	3	6	8	68 68	86 201	116	125	134	<u>4</u> 5	161	169 1	0/1	47 51	
(10)	_	Grade	X42	172 181		43 47	52	56	83	5 %	77 77	85	<u>8</u> 5	c01	120	129	13/	154	163	7/1	4;	6 04	5	57	01 62	55	18	3 8	105	114	122	0.1	147	155	601	4 4 7	
(6)		le B	Alt.	119 125	1	8 %	3.8	39	45	4 84 84	54	59	3 £	71	83	83	8 <u>5</u>	107	113	611	58	31	56	66 5	43 45	5 5	<u>5</u> 6	62 8	32	62	88	38	2 <u>5</u>	107	c11	88	1
(8)		Grade B	Std.	85		ងង	38	31	я X	e 8	64	48	22	2 6	67	12	9/ 8 8	85	83	<u>с</u>	23	25	36	32	¥ %	g 1	45	82	5	63	88	25	81	86	R	83	;
6		c A	Alt.	102		52 g	38	33	88	<u>8</u> 4	4	51	56 26	5 8	22	76	81	92	<u>76</u>	102	24	12	32	34	37 30	£	4 8	53 53	e 69	68	73	2 8	2 20	92 27	16	52 58)
(9)		Grade A	Std.	82 86	8	21	រ អ	8	38 58	86	37	41	4 <u>5</u>	69 C	52	61	8 F	54	78	81	19	51	3 13	27	53	35	39	4	÷ 8	54	28	70 70	82	74	8/	20 22	ł
(2)	Inside	Diameter,	(um)	853.6 850.4	1.000	.949.2 047.6	946.0	944.4	942.8	941.2 030.6	936.4	933.2	930.0	926.8 073 8	920.6	917.4	914.2	0.116 8.709	904.6	901.4	1000.2	938.6 0.200	995.4	993.8	992.2 000 £	987.4	984.2	981.0	974.8	971.6	968.4	965.2	928.8	955.6	952.4	1049.6 1048.0	2.2.21
(4)	Plain- End	Weight,	(kg/m)	658.19 601.81	10,170	186.46 205 17	223.84	242.49	261.11	279.69 208.74	335.25	372.14	408.89	445.52	516.14	552.40	588.53	660.42 660.42	696.18	731.80	196.39	216.11	255.45	275.07	294.66	353.24	392.13	430.90	505.66	544.06	582.33	620.48	00°°00 66°36	734.16	08.177	227.05 247.74	
(3)	Wall	Thickness,	(mm) ^a	30.2 21.8	0.10	7.9 7.9	8./ 9.5	10.3	11.1	11.9	14.3	15.9	17.5	19.1	22.2	23.8	25.4 27.0	28.6 28.6	30.2	31.8	7.9	8.7	0.3 10.3	1.11	11.9	14.3	15.9	17.5	20.6	22.2	23.8	25.4 27.0	28.6	30.2	31.8	8.7	
(2)	Outside	Diameter,	(mm) ^a	914.0 014.0	914.0	965.0	965.0	965.0	965.0	965.0	965.0	965.0	965.0	965.0	965.0	965.0	965.0	0.696	965.0	965.0	1016.0	1016.0	1016.0	1016.0	1016.0	1016.0	1016.0	1016.0	1016.0	1016.0	1016.0	1016.0	1016.0	1016.0	1016.0	1067.0	1001
		Designation	Weight	441.69 422.01	40.591	125.58	150.60	163.01	175.71	187.99	274.71	249.48	274.16	298.37	346.93	371.28	395.16	418.90 443.05	467.06	490.61	132.25	145.69	0/.801	185.06	198.01	236.71	262.83	288.86	314.39	365.62	391.32	416.52	441.04 467.08	492.44	517.31	153.04	1 1 1 1 1
Ē		Desig	Size	8	ç	38	38	8 8	38	38	8 8	8 8	38	38	30	38	89 89 89	8 8 8	38	38	40	9 9	9 4	2 0	\$:	3 4	2 4	8 :	₹₹	3 3	40	4 :	9 4	4	4	6 6	747

SPECIFICATION FOR LINE PIPE

Copyright by the American Petroleum Institute Wed Apr 12 11:24:59 2000

I

•

														ECIF			U D	L.																	
(11)	Grade X80	103	111	133	148 163	178	207	207	207	207	207	207	77	84	16	2 <u>8</u>	113	127	141	169	183	761	207	207	207	202	74	- 1 8	87	<u>5</u> 2	108	121	135	149	
(16)	Grade X70	85	103	116	130	155	801 181	194	207	50 50	207	207	68	74) <u>8</u>	8	66	Ξ	139 139	148	191 191	571	161	207	207	207	65	35	76	83	8 7 70	106	118	130	
(15)	Grade X65	88	£ %	108	132	144 231	6 89 1	180	192	207	207	207	63	6 7	4 (88	92	103	126	137	149	101	183	194	206	207	60	65	71	76 %	70	6	110	2	
(14) 0°°)	Grade X60	78	<u></u> 2 8	001	111	133	155	166	177	661	207	207	58	68	69 77	62	85	95	911	127	137	148	691	180	0 <u>6</u>	207	26	? I9	65	۶0 ۱۲	8	6	101	112	
(13) b (kPa × 10	Grade X56	72	8 S	66 	114	124	145 145	155	165	186	196	207	54	69 C	4 g	4	62	68 S	£ 60	119	128	138	158	167	178	197	52	2 i	19	3 6	24	85	<u>94</u>	20	
(12) est Pressure	Grade X52	89	27 27	88	8.0 2	115	134	144	154	173	183	261	50	55 59	8 Z	5 3	73	83	76	110	611	871	147	156	165	183	48	52	57	61 61	86	6L	88	96	
(11) (12) (13) (Minimum Test Pressure ^b (kPa × 100 ^c)	Grade X46	59	88	76	82	102	011	127	136	153	161	69	45	69 3	75 55	619	65	73	5 6 8	67	105	14	130	138	146	162	43	47	20	2 2 2	° 65	10	11 11	85	
(10)	Grade X42	54	8 8 8	02 E	85	66 ig	<u>6</u>	116	124	140	147	sci	41	4 :	8 2	; S	59	67	t 🗟	68	83	6) II	611	125	133	148	30	43	\$;	8 ¢	8	63	12	8/	
6)	e B Alt.	38	44	84 J	¥ 8	3 F	5 S	81	\$ 8	6	85	10/	28	÷۳	£ %	8 E	41	4 (28	61	58	2 F	82	80	58	103	27	30 i	32	¥ 6	6	4	6 :	4	
8	Grade B	30	7 8	66 5	5 84	52	R 13	65	69 F	c 82	82	80	23	2 2	2 8	2 8	33	37	1 55	50	5 4	86	65	22	47	82	21	3	25	30 S	8.8	35	39	43	
6	Alt	32	37 24	4	51 \$	S 3	3 3	69	42 20	\$ 58	88	76	24	50 20	64 F.	33	35	39	ŧ 8	53	57	5 ¥	202	75	6/ 68	68	23	25	28	88	34	38	4:	4	
(9)	Grade A Std. A	26	3.6	33	ý 4	44 st	52	55	65 F	88	23	4	19	21	2 2	8	28	32	5 E	42	45	2 5	56	99	62	02	61	20	ជន	22	51	30	25	ر. ار	
(5) Inside	Diameter, d (mm)	1044.8	2.6401 1041.6	1038.4	1032.0	1028.8	1022.6	1019.4	1016.2	1009.8	1006.6	4.0001	1100.6	1009.0	1095.8	1094.2	1092.6	1089.4	1083.0	1079.8	1076.8	1070.4	1067.2	1064.0	1057.6	1054.4	1150.6	1149.0	1147.4	8.C411 0.4411	1142.6	1139.4	1136.2	0.5511	
(4) Plain- End	Weight, ^w re (kg/m)	289.03	330.19	371.22	452.91	493. <i>57</i> 531.57	571.98	612.26	652.42 697 45	732.36	772.14	611.79	237.99	259.69	302.99	324.59	346.16	389.21	474.92	517.59	557.47 500.00	642.19	684.37	726.41	/08.33 810.12	851.79	248.72	271.40	294.05	310.07	361.82	406.84	451.73	470.20	
(3) Wall	Thickness, t (mm) ^a	1.11	12.7	14.3	5.01 17.5	19.1 20.6	22.2	23.8	25.4 27.0	28.6	30.2 21 °	0.10	8.7	9.5 10.3	1.11	11.9	12.7	14.3 15 0	17.5	1.9.1	20.6	23.8	25.4	27.0	30.2	31.8	8.7	9.5	10.3	1.11	12.7	14.3	15.9	011	
(2) Outside	Diameter, D (mm) ^a	1067.0	1067.0	1067.0	1067.0	1067.0	1067.0	1067.0	1067.0	1067.0	1067.0	0.1001	1118.0	1118.0	1118.0	1118.0	1118.0	118.0	1118.0	1118.0	1118.0	1118.0	1118.0	1118.0	118.0	1118.0	1168.0	1168.0	1168.0	1168.0	1168.0	1168.0	1168.0	0.0011	
	lation Weight	194.42 208.03	221.61	248.72 276 18	303.55	330.41	384.31	411.35	437.88 464.33	491.11	517.82		160.39	1/4./2	203.78	218.04	232.29	260.72	318.25	346.43	374.53 403.00	431.39	459.24	487.01	543.19	570.71	167.74	182.73	197.70	228.06	242.97	272.73	302.88	CK-7CC	
E	Designation Size Weig	42	1 4	4 ¢	44	4 7 7	24	4 2	4 7 7	42	4 4	7	4:	4 4	14	4	4 :	44	4	4:	4 4	: 4	4 :	1	14	44	46	46	46 1	6 4	46	46	49 74	7	

API SPECIFICATION 5L

Copyright by the American Petroleum Institute Wed Apr 12 11:25:00 2000

												-		Spe	ECIF	ICA	TIO	N F	OR	Lin	E	PIPI	: 																8
(11)		Grade X80	189	202	207	207	202	207	11	77	84	88	/6	103	011	147	155	168	181	194	207	202	102	207	71	11	55 S	6 50	107	611	131	143	155	10/	161	203	207	207 207	77
(16)		Grade X70	165	177	189	200	207	207	62	89	74	62	38	33	102	52	136	147	158	691	181	192	202	207	63	68	£ 8	6 5	88	104	115	125	136	140	167	177	188	198 207	03
(15)		Grade X65	154	165	175	186	197	207	58	63	68	74	61	84 7	<u>4</u> 5	911	126	136	147	158	168	178	60 000	202	58	63	8 i	5 Z	2.8	<u>16</u>	107	116	126	0C1	55	165	174	184 194	73
(14)	(• 0	Grade X60	141	152	162	172	182	202 202	53	58	63	68	£ 1	- 5	/8	101	116	126	136	145	155	165	101	194	54	58	63 1	56	1 8	8	66	107	116	<u>9</u> 5	143	152	161	071 179	60
(13)	^b (kPa × 10	Grade X56	132	142	151	161	170	1/9	50	54	6 5	63	8	22	8	R 8	2 <u>0</u>	118	127	136	145	154	61	181	50	54	3 9	60 59	5	63	92	100	80 F	111	3 5	142	150	158 167	77
(12)	Minimum Test Pressure ^b (kPa × 100°)	Grade X52	123	132	140	149	158	167	46	50	54	59	63	8 i	9/	5	7 <u>0</u>	601	811	126	134	143		168	47	50	5	8 S	32	78	85	93	101	601	174	132	140	147 155	5
(11)	Ainimum Te	Grade X46	601	116	124	132	139	147 155	41	45	4 8	52	8	65 (19	± 2	2 8	8	104	112	611	126	5	149	41	45	48	27	3 5	69	76	82	6 8 2	£ 5	011	116	123	130 137	96
(10)		Grade X42	66	901	113	121	127	134 141	75	41	4	48	5	5	[9]	90 74	t 22	: 28	95	102	601	115	72	136	38	41	4 :	4 4	3 \$	3 69	69	75	8	80	ξ	108	113	119 125	
(6)	B	Alt	69	74	79	83	88	2 8	26	58	30	33	35	20 C	4	÷ 6	1.5	61	99	71	75	8	88	<u>5</u> 2	26	28	8	22	t 9	34	8	52	S6	2	3 8	24	62	83 83	ā
(8)	Grade B	Std.	55	69	63	67	۲.	76 76	10	53	25	26	58 5	8	£ 8	90 17	45	64	53	56	61	2 (8 F	75	21	23	24	9? ?	97 F	5 7	39	42	45	4 2	7 7	9 9	69	99 20	ŝ
6	V	Alt.	59	63	68	72	76	08 88 8 8	"	51	26	28	ଛା	32	5	44	4	52	56	61	65	69	22	0/ 18	22	24	26	28	74	5.6	41	45	48	77	89	3 %	6 6	71 74	į
9	Grade A	Std.	47	50	54	57	61	28	18	61	21	23	27	8	62 8	7 2	9 8	42	45	48	52	55	8	65	18	19	51	22	4 7 7	÷ ۵	8	36	39	74	64 v	₽ īz	5 5 7	95 96	ţ
(5)	Inside Diameter.	(سس)	1123.6	1120.4	1117.2	1114.0	1110.8	1107.6 1104.4	1201.6	1200.0	1198.4	1196.8	1195.2	1193.6	1190.4	7.011	1180.8	1177.8	1174.6	1171.4	1168.2	1165.0	1101.8	1126.0	1302.0	1300.4	1298.8	1297.2	0.0621	1289.2	1286.0	1282.8	1279.8	12/0.0	12/3.4	7.0121	1263.8	1260.6 1257.4	
(4)	Plain- End Weipht.	w _{pe} (kg/m)	627.27	671.54	715.68	759.70	803.59	847.36 890.99	250.66	283.35	307.01	330.63	354.23	377.79	424.82	512 51	565 16	608.78	655.19	701.47	747.63	793.66	00.958	930.99	307.25	332.92	358.55	384.16 400 74	460.70	511.72	562.53	613.20	660.60	2011/	40.10/	861 57	911.50	961.30 1010.98	
(3)	Wall Thickness.	r (mm) ^a	22.2	23.8	25.4	27.0	28.6	30.2 31.8	8 7	9.5	10.3	11.1	11.9	12.7	14.3	2.01 2.01	101	20.6	22.2	23.8	25.4	27.0	28.0	31.8	9.5	10.3	1.11	9.11 2.21	1.4.1	15.9	17.5	19.1	20.6	22.2	6.07 15.0	1.72 1	28.6	30.2 31.8	1
(2)	Outside Diameter	D (mm) ^a	1168.0	1168.0	1168.0	1168.0	1168.0	1168.0 1168.0	0.0171	1219.0	1219.0	1219.0	1219.0	1219.0	1219.0	0.6121	1219.0	1219.0	1219.0	1219.0	1219.0	1219.0	1219.0	1219.0	1321.0	1321.0	1321.0	1321.0	0.1221	1321.0	1321.0	1321.0	1321.0	1321.0	1321.0	0.1251	1321.0	1321.0	
	vation .	Weight	421.69	451.42	480.60	509.69	539.17	568.57 597.41	175.08	190.74	206.37	222.49	238.08	253.65	284.73	C7.01C	278.47	409.22	440.38	471.46	501.96	532.38	563.20	624.11	206.76	223.72	241.20	258.11	10.012	347.03	377.03	410.51	443.91	477.76	24162		611.26	644.69 677.51	
(<u></u>]	Designation	Size	4	46	46	46	46	8	81	\$	48	48	8	8	8 4 9	40	9 8	4	84	48	48	48	4 8	64 84 84	52	52	52	22	2 5	25	22	52	52	22	25	7 5	25	52	

_

API SPEC*5L 95 🔳 0732290 0541225 295 🔳

_

Copyright by the American Petroleum Institute Wed Apr 12 11:25:02 2000

_

															AF	15	PEC	FICA		N D	L																
(11)			X80	21	1.0	3 8	8	H	122	<u>5</u>	155	166	171	100	207	207	62	69 F	7 [83	93 55	103	124	134	4 2	165	1/6	197	207	58	20 S	8 E	LL -	18 76	107	117	135
(16)		ţ	X70	63	80 57	2 82	87	76	10/	126	136	145	cci 591	174	184	194	54	59	88	22	81	38	109	118	127	145	154	172	181	51	ς β	8 3	68	76 85	93	102	611
(15)		i pur C	X65	2 6	60 99	82	81	88	66 <u>8</u>	117	126	135	144 153	162	171	180	50	5 5	8 C	88	76	¥ 8	101	601	118	134	143 151	160	168	48 1	2 8	38	63	17 62	87	<u> 8</u> 5	110
(14)	(s)	, opur O	X60	54	8 6	3 8	74	88	76	80 108	116	125	133 141	150	158	166	47	S 2	t 65	62	20	8,8	3 6	101	116	124	132	147	155	43	8 . 2	5 5	58	22 22	80	8 8	102
(13)	^b (kPa × 1(t t t	X56	95 I	\$ 8	3	6	1	88	7 IO	108	116	132	139	147	155	43	47	2 2	58	65 1	7 08	87	23	101	116	123	138	145	41	4 é	51 51	5	61 68	74	18 88 18 88	<u>95</u>
(12)	est Pressure	chan C	X52	47	9 9 7	5 8	65	72	6/ 98	32	101	108	CI 123	130	137	144	41	4 3	÷ S	54	61	08 74	81	83	<u>4</u> 0	107	114	127	134	38	44	\$	50	88	70	92 28	88
(11)	Minimum Test Pressure ^b (kPa \times 100°)	, T	X46	41	45 28	51	57	63	5 2	5 58	89	96	201	114	121	127	36	96 F	4	48	X (6 5	3	12	88	56	101	113	119	34	5 90	64	45 5	2	[<u>9</u>	19 72	78
(10)	K	chor.C	X42	38	1 4	94	52	89 28	\$ F	2 <u>9</u>	81	88	28	105	110	116	32	35	8 14	: 64	49	¥ 8	3	51	0/ 18	87	92 98	103	109	8	£ %	8 8	4	5 5 12	56	58	11
6)		e B	Alt.	26 26	88	88	37	41	64 84	22	56	19	88	62	76	81	23	52	9 8 7 8	8	88	58 41	- 7	6	6 1 6	61	\$ %	28	75	21	38	8	28	3 2	<u>66</u>	4 4 6	5
(8)		Grade B	Std.	31	5 2	52	29	32	88	64	55	48 2	25	58	61	65	18	61	7 27	54	27	9 F	37	66 9	4 5	48	10	51	61	21	6 6	21	23	S 8	31	45 75	39
ε		еA	Alt.	23	5 2	38	31	34	38 71	5 5	48	22	00 74	13	65	69	19	21	5 5	56	ຊ ຊ	2 %	39	4	3 4	22	ų č	61	65	18	3 5	32	24	88	£	5 68	43
(9)		Grade A	Std.	18	2 5	32	25	, 28 ,	88	8	39	4	44 7	5 93	52	55	16	12	19	21	33	07 82	31	¥ :	с 66	4	4 4 7	49	52	4;	0 1	18	61	5 7	27	88	34
(2)	Incide	Diameter,	ر (mm)	1401.4	5.9961 1308 7	1396.6	1393.4	1390.2	1387.0	1380.8	1377.6	1374.4	13/1.2	1364.8	1361.6	1358.4	1505.0	1503.4	1500.2	1498.6	1495.4	1492.2	1485.8	1482.8	1476.4	1473.2	14 /0.0 1466 8	1463.6	1460.4	1607.0	1603.8	1602.2	1600.6	1594.2	1591.0	1584.8	1581.6
(4)	Plain- Fnd	Weight,	(kg/m)	358.57	360.2U	441.37	496.41	551.32	000.11 660.77	711.91	766.32	820.61	874.78 928.82	982.73	1036.52	81.0601	355.69	384.89 415.00	444.15	473.31	532.38	650.13 650.13	708.82	763.72	880.48	938.67	996.73 1054.67	1112.48	1170.17	378.70	442 04	473.66	505.26	508.35 631.31	694.15	815.54	878.00
(3)	Wall	Thickness,	(mm) ^a	10.3	1.11	12.7	14.3	15.9	C:/1	20.6	22.2	23.8	27.0	28.6	30.2	31.8	9.5	10.3	0.11	12.7	14.3	17.5	19.1	20.6	23.8	25.4 25.4	28.6 28.6	30.2	31.8	9.5	111	9.11	12.7	14.3 15.9	17.5	20.6	22.2
(3)	Outside	Diameter,	(mm) ^a	1422.0	1422.0	1422.0	1422.0	1422.0	1422.0	1422.0	1422.0	1422.0	1422.0	1422.0	1422.0	1422.0	1524.0	1524.0	1524.0	1524.0	1524.0	1524.0	1524.0	1524.0	1524.0	1524.0	1524.0	1524.0	1524.0	1626.0	1626.0	1626.0	1626.0	1626.0	1626.0	1626.0	1626.0
~		Designation	Weight	241.06 250.01	16.602	296.37	332.75	369.63 406 40	440.42	478.60	515.14	551.60 597.40	623.12	659.32	695.45	16:05/	238.80	258.40 278.62	208.19	317.73	356.76 304 33	435.82	474.59	513.29	591.67	630.12	707.38	746.20	784.31	254.82	297.33	318.22	339.09	423.03	465.21	547.98	589.90
Ξ		Desig	Size	2ç X	R ¥	88	56	% X	8 ¥	2 8	56	56 26	8 9	295	56	R	9 9	33	33	99	83	33	99	88	38	8	88	8	8	22	5 Z	2	22	<u> </u>	22	5 Z	2

_

API SPECIFICATION 5L

Copyright by the American Petroleum Institute Wed Apr 12 11:25:04 2000 - -

86

1 .

(11)		Grade	X80	145	155	C 12	184	194	68	73	70	101	110	118	127	137	140	2	173	183	69	87	90 25	2 <u>5</u>	112	021	671	146	155	<u>2</u> 5	7/1	65	57 23	38	86	106 114	122	131
(16)		Grade	X70	127	136	<u> </u>	191	169	60	28	71	8 8	96	103	112	120	12/	143	152	160	61	89	c 8	6	86 ș	501 511	511 121	128	136	143		57	4 f	6	85	93 100	107	114
(15)		Grade	X65	118	126	51 57 57	150	158	56	8 (67	t 18	68	8	<u>8</u>		119	134	141	148	S 6	38	2 1	5 8	16	8 2	<u>6</u>	611	126	133	<u>}</u>	53	3 2	35	62	86	\$8	108
(14)	(c)	Grade	X60	601	116	123	138	145	51	54	10	90 22	82	89	83	103	116	123	130	137	52	28	3 5	78	2 8 28	S 8	103	011	116	123	R	49	S 13	58	74	67 8	38	00
(13)	^b (kPa \times 10	Grade	X56	102	108	5 1 5	77	136	48	5	10	58	76	83	83	85	701	115	121	127	48	¥ (3 25	72	62	2 5	38	103	108	114	171	45	52	59 5	68	74 80	s 8	5
(12)	st Pressure	Grade	X52	94	101	10/	120	126	45	8	<u>د</u>	8 G	71	77	83	68 9	8 <u>9</u>	107	113	611	45	8	8 5	; %	73	6	¥ 8	8	101	<u>8</u>	711	43	8 8 6	5 2 2	63	69 74	2 S	20
(11)	Minimum Test Pressure ^b (kPa $\times 100^{\circ}$)	Grade	X46	83	68	4 2	101	112	39	45	4 S	7 85	63	68	4	64	¥ %	5	100	105	39	5 5	5 2	8	21	22	4/	84	68	8	F	37	42	52	56	61 62	38	50
(10)	2	Grade	X42	76	81	\$8	38	102	36	39	43 8	2	57	62	<u></u>	22	o 18	8	91	8	37	4	3 5	54	59	83	4 8	12	81	86	6	34	39 7	47	52	56 60	32	
(6)		в. В.	Alt.	53	3 6	33	35	71	25	27	२ १	5 E	6	43	47	20	25	8	63	67	25	58 58	75	38.	4	4 4	4 ¥ / v	88	56	99 (63	24	27	38	36	39	45	
(8)		Grade B	Std.	43	45 	48	5 5	26	20	21	47 5	50	32	34	37	9 :	45 45	48	50	53	20	23	() %	8	32	35	<u>8</u> 9	43 43	45	48	20	19	55	56 26	28	31	36 J	
6		۴V	Alt.	45	48	52	¥ %	619	21	23	28	86	8	37	9 :	43 46	6 8	51	54	57	21	24	7 2	32	35	38	41	4 5 5	48	51	54	21	53	3 8 7 8	8	33 36	5 E	
(9)		Grade A	Std.	37	39	4 5	4 4 4	48	17	18	77	3 %	8	30	32	¥ ;	39 S	41	43	45	17	61 2	77	38	28	88	22	37	39	41	43	17	6 5	23	25	26 26	30	
(2)	Inside	Diameter, d	(mm)	1578.4	1575.2	1572.0	1565.6	1562.4	1703.2	1701.6	1698.4	1692.0	1688.8	1685.8	1682.6	1679.4	1673.0 1673.0	1669.8	1666.6	1663.4	1803.6	1800.4	1794.0	1790.8	1787.8	1784.6	1781.4	1775.0	1771.8	1768.6	1765.4	1904.6	1901.4	1070.4	1891.8	1888.8	1882.4	
(4)	Plain- End	Weight, w	(kg/m)	940.34	1002.56	1064.65	1120.01	1250.15	503.30	536.89	603.96	14.0/0	804.43	866.84	933.30	999.62 1075 82	1131.89	1197.84	1263.66	1329.36	568.83	639.93	16.01/	852.47	918.66	989.14	1120.60	1899.81	1269.78	1339.62	1409.34	600.46	675.55 750 51	10001 825.34	900.05	969.97 1044 42	1118.76	
(3)	Wall	Thickness, t	(mm) ^a	23.8	25.4	27.0	20.2 20.2	31.8	11.9	12.7	14.5	6.CI 7.7	1.61	20.6	22.2	23.8	27.0	28.6	30.2	31.8	12.7	14.3	9.01 2.71	19.1	20.6	22.2	23.8	27.0	28.6	30.2	31.8	12.7	14.3	2.CI	1.61	20.6	22.2 23.8	
3	Outside	Diameter, D	(mm) ^a	1626.0	1626.0	1626.0	1626.0	1626.0	1727.0	1727.0	0.727.0	0.7271	1727.0	1727.0	1727.0	1727.0	1727.0	1727.0	1727.0	1727.0	1829.0	1829.0	1829.0	1829.0	1829.0	1829.0	1829.0	1829.0	1829.0	1829.0	1829.0	1930.0	1930.4	1930.0	1930.0	1930.0	1930.0	0.0001
		nation	Weight	631.75	672.84	713.85	#.cc/	837.71	338.26	360.45	404.7	449.73 494.60	538.67	582.66	627.28	671.82	759.22	803.50	847.70	891.11	381.81	428.78	4/0.45 523.00	570.71	617.35	664.66	711.89	804.59	851.56	898.45	944.51	403.17	452.79	553.38	602.75	652.04 702.04	751.96	
Ξ		Designation	Size	6	8	22	83	53	88	68 (88	88	3 33	68	68	8 (88	3 33	68	68	72	21	25	72	72	21	22	12	72	72	52	76	36 76	0, 76	76	76 27	o 92	2.2

SPECIFICATION FOR LINE PIPE

87

Copyright by the American Petroleum Institute Wed Apr 12 11:25:05 2000

Outside Designation Diameter.	Wall	۔ د						W	linimum Te	st Pressure	Minimum Test Pressure ^b (kPa \times 100 ^c)	() c)			
	Thickness,	End Weight,	Inside Diameter,	Grade A	<	Grade B	B								
Size Weight (mm) ^a	ر mm) ^a	w _{pe} (kg/m)	(uuu)	Std.	Alt.	Std.	Alt.	Grade X42	Grade X46	Grade X52	Grade X56	Grade X60	Grade X65	Grade X70	Grade X80
899.62 1930.0	28.6	1341.02	1872.8	37	46	43	54	11	85	96	103	110	611	129	147
	30.2	1414.84	1869.6	39	48	45	56	81	68	101	109	116	126	136	155
997.91 1930.0	31.8	1488.55	1866.4	41	51	48	59	85	94	106	114	123	132	143	163
476.80 2032.0	14.3	711.52	2003.4	17	22	21	25	37	40	45	49	52	56	61	Х
	15.9	790.50	2000.2	19	24	23	28	41	45	50	54	58	63	68	*
582.77 2032.0	17.5	869.36	0.7991	21	27	25	31	45	49	55	8	2	70	74	89
	1.91	948.09	1993.8	23	29	27	34	49	54	61	65	70	76	81	6
	20.6	1021.78	8.0661	25	32	30	37	53	58	65	70	76	82	88	101
	22.2	1100.27	1987.6	27	34	32	39	57	63	70	76	81	88	95	108
792.03 2032.0	23.8	1178.63	1984.4	29	37	34	43	61	67	76	81	88	94	102	116
843.72 2032.0	25.4	1256.86	1981.2	31	39	37	45	65	71	81	87	93	101	601	124
	27.0	1334.97	1978.0	33	41	39	48	69	76	85	92	66	107	115	132
947.68 2032.0	28.6	1412.95	1974.8	35	43	41	51	73	80	91	98	105	114	122	<u>4</u>
	30.2	1490.80	1971.6	37	46	43	54	77	85	96	103	110	120	129	147
1051.31 2032.0	31.8	1568.53	1968.4	39	48	45	56	81	68	101	108	116	126	- 136	155

API SPECIFICATION 5L

Copyright by the American Petroleum Institute Wed Apr 12 11:25:07 2000

88

Т

APPENDIX F-SUPPLEMENTARY REQUIREMENTS (NORMATIVE)

By agreement between the purchaser and the manufacturer and when specified on the purchase order, the following supplementary requirements (SR) shall apply.

SR3 Color Identification

SR3.1 Grades X46 and higher, pipe size $4^{1}/_{2}$ and larger shall be identified by color in accordance with the color code given in SR3.3.

SR3.2 The manufacturer shall apply a 2 in. (50 mm) daub of paint of the appropriate color on the inside surface at one end of each length of pipe.

SR3.3 The grade identification colors are as follows:

Grade	Color
X46	Black
X52	Green
X56	Blue
X60	Red
X65	White
X70	Purple
X80	Yellow

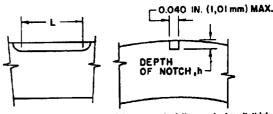
SR4 Nondestructive Inspection of Seamless Line Pipe

SR4.1 SUPPLEMENTARY NONDESTRUCTIVE INSPECTION

Seamless pipe shall be inspected full length for longitudinal defects by either magnetic particle inspection or by ultrasonic or electromagnetic methods. The location of the equipment in the mill shall be at the discretion of the manufacturer; however, the nondestructive inspection must take place after all heat treating and expansion operations, if performed, but may take place before cropping, beveling, and end sizing.

SR4.2 MAGNETIC PARTICLE INSPECTION

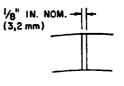
When magnetic particle inspection is employed to inspect for longitudinal defects, the entire outside surface shall be inspected. The depth of all imperfections revealed by magnetic particle inspection shall be determined; and when found to be greater than $12^{1}/_{2}$ percent of the specified wall thickness, the imperfection shall be considered a defect. Pipe containing defects shall be disposed of in accordance with 9.7.5.4.


SR4.3 ULTRASONIC OR ELECTROMAGNETIC INSPECTION

SR4.3.1 Equipment

Any equipment utilizing the ultrasonic or electromagnetic principles and capable of continuous and uninterrupted inspection of the entire outer surface of the pipe or tube may be used. The equipment shall be of sufficient sensitivity to indicate defects and shall be checked as prescribed in SR4.3.2.

SR4.3.2 Reference Standards


At least once every working shift, a reference standard having the same nominal diameter and thickness as the product being inspected shall be used to demonstrate the effectiveness of the inspection equipment and procedures. The reference standard may be of any convenient length as determined by the manufacturer. It shall be scanned by the inspection unit in a manner simulating the inspection of the product. For ultrasonic inspection, the reference standard shall contain a machined notch as specified in Figure F-1. For electromagnetic inspection, the reference standard shall contain either a machined notch as specified in Figure F-1 or a $\frac{1}{8}$ in. (3.2 mm) drilled hole (see Note 1). The notch shall be in the outer surface of the reference standard and

Depth of notch, h, shall be 12½ per cent of the nominal walt thickness of the pipe being inspected, but not less than 0.012 in. (0.30 mm).

For ultrasonic and eddy current the length of notch at full depth, L, shall be at least twice the width of the scanning head. For diverted flux the length of notch shall be as required by the equipment design to provide a reproducible signal when the reference standard is passed through the equipment at the inspection line speed for the pipe being inspected. Three passes through the equipment shall be required to insure reproducibility.

NOTCH

DRILLED HOLE

Figure F-1—Reference Standards

parallel to the longitudinal axis of the pipe or, at the option of the manufacturer, may be oriented at such an angle as to optimize the detection of anticipated defects (see Note 2). The 1/8 in. (3.2 mm) hole shall be drilled radially through the wall of the reference standard. The inspection equipment shall be adjusted to produce a well-defined indication when the reference standard is scanned by the inspection unit.

Note 1: The reference standards defined above are convenient standards for calibration of nondestructive testing equipment. The dimensions of these standards should not be construed as the minimum size imperfection detectable by such equipment.

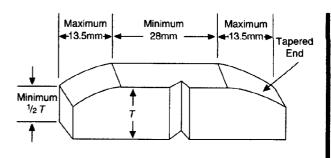
Note 2: Reference standards other than the specific notch described above may be used by agreement between the purchaser and the manufacturer.

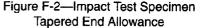
SR4.3.3 Acceptance Limits

Any imperfection that produces a signal greater than the signal received from the reference standard shall be considered a defect unless it can be demonstrated by the manufacturer that the imperfection does not exceed the provisions of 7.8. Pipe containing defects shall be given one of the dispositions specified in 9.7.5.4.

SR4.4 MARKING

Pipe nondestructively inspected in accordance with this supplementary requirement shall be marked SR4.


SR5 Fracture Toughness Testing (Charpy V-Notch) for Outside Diameter 4.500 Inches or Larger


SR5.1 The manufacturer is responsible for the performance of Charpy V-notch tests in accordance with ASTM A 370, *Mechanical Testing of Steel Products*, Annex II—Steel Tubular Products. Either or both toughness criteria (SR5A—Shear Area or SR5B—Absorbed Energy) may be specified under this supplementary requirement.

SR5.2 The following applies to all specified limits and observed values to be used in connection with this supplementary requirement.

For purposes of determining conformance with these supplementary requirements, an observed value shall be rounded off to the nearest whole number in accordance with the rounding-off method of ASTM E 29, *Practice for Using Significant Digits in Test Data to Determine Conformance With Specifications*. Further, limiting values as specified or calculated under this supplementary requirement shall be expressed as whole numbers rounded, if necessary.

SR5.3 The following Charpy V-notch specimens are permissible by agreement between the purchaser and the manufacturer:

a. Full-size specimens. Full-size specimens (10 mm by 10 mm) with or without tapered ends may be used (see note). (See Figure F-2.)

b. Subsize specimens. The largest possible subsize specimen (see Table F-1) with or without tapered ends may be used. All dimensions other than thickness are the same as the full-size specimen. Selecting subsize specimens for pipe whose size permits full-size specimens is also permissible by agreement between the purchaser and the manufacturer.

Note: When tapered-end specimens are used, the tapering shall not reduce the specimen length on one side below 28 mm or the end thickness below one-half the nominal specimen thicknes

SR5A Shear Area

SR5A.1 Three transverse specimens shall be taken from one length of pipe from each heat supplied on the order.

The requirements of this supplementary requirement are limited to pipe sizes and thicknesses from which a 1/2-size specimen may be secured.

The specimen shall be oriented circumferentially from a location 90 degrees from the weld with the axis of the notch oriented through the pipe wall thickness as shown in Figure F-3.

SR5A.2 The specimens shall be tested at 50°F (10° C) or at a lower temperature as specified by the purchaser. The average shear value of the fracture appearance of the three specimens shall not be less than 60 percent, and the all-heat average for each order per diameter size and grade shall not be less than 80 percent.

SR5A.3 If the average of the three specimens from one heat does not meet the requirement of 60 percent shear, the manufacturer may elect to repeat the tests on specimens cut from two additional lengths of pipe from the same heat. If such specimens conform to the specified requirements, all the lengths in the heat shall be accepted except the length initially selected for test. If any of the retest specimens fail to pass this specified retest requirement, the manufacturer may

elect to test specimens cut from the individual lengths remaining in the heat.

SR5A.4 The average shear value for a heat shall be the average of the original three specimens if the average is 60 percent or more; the combined average of the retest specimens, provided the average of each group of three specimens is 60 percent or more; or, in the event individual lengths are tested, the combined average of all groups of three specimens that meet 60 percent. The all-heat average value is the combined average of the value established for each heat.

SR5A.5 If the all-heat average of the order does not meet the requirement of 80 percent shear, the manufacturer shall be responsible for replacement of such heats as may be necessary to bring the average shear area up to 80 percent.

SR5A.6 Alternatively, the manufacturer may elect to test two or more additional lengths from one or more of the heats. In determining the new heat average, the original test values may be discarded if the pipe length represented is rejected or the three or more individual values are averaged. In any case, the new test values shall be incorporated into the value for the heat.

SR5A.7 Specimens showing material defects or defective preparation, whether observed before or after breaking, may be discarded and replacements shall be considered as original specimens.

SR5A.8 Pipe tested in accordance with SR5A shall be marked to indicate the type of test and the test temperature. The following are examples:

a. At +32°F, mark: SR5A-32F.

b. At -40°F, mark; SR5A-M40F (see note).

Note: Temperatures below zero shall be preceded by the letter M.

SR5B Absorbed Energy

SR5B.1 The fracture toughness of the pipe shall be determined using Charpy V-notch impact test specimens in accordance with ASTM A 370 and the requirements of SR5A.1, except that test frequency shall be as indicated in SR5B.2. The purchaser shall specify, in whole numbers, both the test temperature and the minimum average absorbed energy for full-size specimens.

Specimens used for shear area determination according to SR5A may also be used for the determination of absorbed energy.

SR5B.2 Three transverse specimens representing one test shall be taken from one length of pipe from each lot of 100 lengths per heat produced.

SR5B.3 For acceptance, the average absorbed energy of the three individual specimens from a length shall not be less than the full-size value specified by the purchaser. In addition, the lowest individual reading of the three specimens shall not be less than 75 percent of the specified value. When substitute specimens are used, the individual readings and the average of the three readings are divided by the ratio of the specimen thickness tested to the full-size specimen thickness and compared with the full-size acceptance criteria.

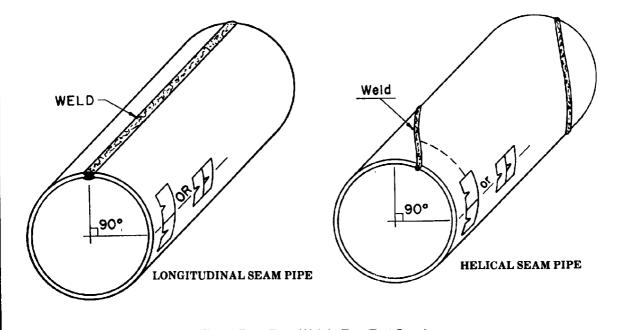


Figure F-3—Drop Weight Tear Test Specimen

92

API SPECIFICATION 5L

Table F-1-Minimum Wall for Transverse	
Charpy V-Notch Specimens	

		Mi	nimum Wa	ll Thicknes	s	
Outside		l Size		Size		Size
Diameter	Spe	cimen	Spec	imen	Spe	cimen
(in.)	in.	mm	in.	mm	in.	mm
4.500	0.672	(17.06)	0.541	(13.74)	0.475	(12.05)
5.563	0.614	(15.60)	0.483	(12.27)	0.417	(10.59)
6.625	0.578	(14.68)	0.445	(11.30)	0.378	(9.60)
8.625	0.532	(13.51)	0.401	(10.19)	0.335	(8.51)
10.750	0.504	(12.80)	0.373	(9.47)	0.307	(7.80)
12.750	0.487	(12.37)	0.352	(8.94)	0.290	(7.37)
14.000	0.478	(12.14)	0.347	(8.81)	0.281	(7.14)
16.000	0.468	(11.89)	0.337	(8.56)	0.271	(6.88)
18.000	0.459	(11.66)	0.328	(8.33)	0.262	(6.65)
20.000	0.453	(11.51)	0.323	(8.20)	0.256	(6.50)
22.000	0.447	(11.35)	0.316	(8.03)	0.250	(6.35)
24.000	0.443	(11.25)	0.312	(7.92)	0.246	(6.25)
26.000	0.439	(11.15)	0.308	(7.82)	0.242	(6.15)
28.000	0.436	(11.07)	0.305	(7.75)	0.239	(6.07)
30.000	0.433	(11.00)	0.302	(7.67)	0.236	(5.99)
32.000	0.431	(10.95)	0.300	(7.62)	0.234	(5.94)
34.000	0.429	(10.90)	0.298	(7.57)	0.232	(5.89)
36.000	0.427	(10.85)	0.296	(7.52)	0.230	(5.84)
38.000	0.425	(10.80)	0.294	(7.47)	0.228	(5.79)
40.000	0.423	(10.74)	0.292	(7.42)	0.226	(5.74)
42.000	0.422	(10.72)	0.291	(7.39)	0.225	(5.72)
44.000	0.421	(10.70)	0.290	(7.37)	0.224	(5.69)
46.000	0.419	(10.64)	0.288	(7.32)	0.222	(5.64)
48.000	0.418	(10.62)	0.287	(7.30)	0.221	(5.61)
52.000	0.417	(10.59)	0.286	(7.26)	0.220	(5.59)
56.000	0.415	(10.54)	0.284	(7.21)	0.218	(5.54)
60.000	0.414	(10.52)	0.283	(7.19)	0.217	(5.51)
64.000	0.412	(10.46)	0.281	(7.14)	0.215	(5.46)

SR5B.4 Specimens showing material defects or defective preparations, whether observed before or after breaking, may be discarded and replacements shall be considered original specimens.

In the event a set of test specimens fails to meet the acceptance criteria, the manufacturer may elect to replace the lot of material involved or alternatively to test two more lengths from the same lot. If both of the new tests meet the acceptance criteria, then all pipe in that lot with the exception of the original selected length shall be considered to meet the requirement. Failure of either of the two additional tests shall require testing of each length in the lot for acceptance.

SR5B.5 Pipe complying with SR5B shall be marked to indicate the type of test, the specified (full-size) minimum average absorbed energy, and the test temperature. For example:

a. For 20 ft-lbs at +32°F, mark: SR5B-20-32F.

b. For 20 ft-lbs at -40°F, mark: SR5B-20-M40F (see note). c. For both SR5A and SR5B (27 Joules) at 0°C, mark: SR5AB-27J-O°C.

Note: Temperatures below zero shall be preceded by the letter M.

SR6 Drop-Weight Tear Testing on Welded Pipe Sizes 20 and Larger, Grade X52 and Higher

SR6.1 Fracture toughness of pipe sizes 20 and larger, Grade X52 and higher, shall be determined by the manufacturer using drop-weight tear tests in accordance with the requirements in SR6.2–SR6.8.

SR6.2 Two transverse specimens shall be taken from one length of pipe from each heat supplied in the order. The specimens shall be oriented circumferentially from a location 90 degrees from the weld with the axis of the notch oriented through the pipe wall thickness as shown in Figure F-3. The specimens shall be tested at 50°F (10°C) or at a lower temperature as specified by the purchaser.

SR6.3 The test specimens, testing procedure, and rating of the specimens shall be in accordance with API Recommended Practice 5L3.

SR6.4 At least 80 percent of the heats shall exhibit a fracture appearance shear area of 40 percent or more for the specified test temperature (see note).

Note: Due to manufacturing difficulties encountered with thicker materials, pipe producers may not be able to offer materials in all grades that meet this requirement.

SR6.5 In the event the average value of the two specimens from the length selected to represent the heat is less than 40 percent, the manufacturer may elect to establish the heat average by testing two specimens from each of two or more additional lengths of pipe in the heat. In establishing the new heat average, the manufacturer may elect (a) to employ the combined average of the three tests or more or (b) to discard the result of the first test, reject the pipe from which it was taken, and employ the combined average of the two or more additional tests. Alternatively, the manufacturer may elect to test all the pipe in the heat, in which case 80 percent or more of the lengths tested and applied to the order must exhibit an average of 40 percent or more shear.

SR6.6 Specimens showing material defects or defective preparation, whether observed before or after breaking, may be discarded and replacements shall be considered as original specimens.

SR6.7 The manufacturer shall be responsible for replacement of such heats as may be necessary to meet the above requirements.

SR6.8 Pipe tested in accordance with SR6 shall be marked to indicate the type of test and the testing temperature. The following is an example:

SR6-32F

SR7 Through-the-Flowline (TFL) Pipe

SR7.1 GENERAL

Through-the-flowline (TFL) pipe shall comply with all requirements of this specification except as specified in SR7.2-SR7.6.

SR7.2 DIMENSIONS AND GRADES

TFL pipe shall be seamless or longitudinal-seam pipe in the outside diameters, wall thicknesses, and grades listed in Table F-2.

SR7.3 LENGTH

Unless otherwise specified, TFL pipe shall be furnished only in double random lengths with no jointers (girth welds).

SR7.4 DRIFT TESTS

Each length of TFL pipe shall be tested throughout its entire length with a cylindrical drift mandrel conforming to the requirements listed below. The leading edge of the drift mandrel shall be rounded to permit easy entry into the pipe. The drift mandrel shall pass freely through the pipe with reasonably exerted force equivalent to the weight of the mandrel being used for the test. Pipe shall not be rejected until it has been drift tested when it is free of all foreign matter and properly supported to prevent sagging.

		Drift	Mandrel Size	e
	L	ength	Diam	., min.
Outside Diameter	in.	mm	in.	mm
$\frac{2^{7}}{8}$ and smaller	42	(1,066)	$(d - {}^{3}/_{32})$	d – 2.4
$3^{1}/_{2}$ and larger	42	(1,066)	$(d - {}^{1}/_{8})$	d - 3.2

SR7.5 HYDROSTATIC TESTS

TFL pipe shall be hydrostatically tested in accordance with the requirements of 9.4, except that the minimum test pressures shall be as shown in Table F-2. These values are computed by the equation given in 9.4.3 using a fiber stress (S) equal to 80 percent of the specified minimum yield strength or 10,000 psi (68.9 MPa), whichever is less.

SR7.6 MARKING

TFL pipe manufactured in accordance with SR7 shall be marked with the letters TFL in addition to the marking required in Section 10 or Appendix I.

SR14 End Load Compensation for Hydrostatic Test Pressures in Excess of 90 Percent of Specified Minimum Yield Strength

SR14.1 As a measure to prevent distortion when testing at pressures equivalent to stresses in excess of 90 percent of specified minimum yield strength; the manufacturer may apply a calculation to compensate for the forces applied to the pipe end that produce a compressive longitudinal stress. The calculation in SR14 is based on Barlow's equation (see 9.4.3) modified by a factor based on the Maximum Shear Theory (see note). The calculation may be applied only when testing in excess of 90 percent of the specified minimum yield strength. In no case may the gag pressure for testing be less than that calculated using Barlow's equation at 90 percent of specified minimum yield strength.

(1)	(2)	(3)		(4)		(5)	(5)		(7)
Size		Diameter, D		Wall Th	nickness, t	Wei	ght, w _{pe}	Inside D	iameter, <u>d</u>	-	lrostatic Pressure
Designation	in.	mm	Grade	in.	mm	lb/ft	kg/m	in.	mm	psi	100 kPa
2 ³ /8 ^a	2.375	(60.3)	X56	0.188	(4.8)	4.39	(6.54)	1.999	(50.7)	7100	(489)
2 ⁷ /8	2.875	(73.0)	X56	0.438	(11.1)	11.40	(16.98)	1.999	(50.8)	10000	(689)
2 ⁷ / ₈ ^a	2.875	(73.0)	X56	0.216	(5.5)	6.13	(9.13)	2.443	(62.2)	6700	(462)
3 ¹ /2	3.500	(88.9)	X56	0.530	(13.5)	1 6.81	(25.04)	2.440	(61.9)	10000	(689)
4	4.000	(101.6)	X60	0.750	(19.1)	26.03	(38.77)	2.500	(63.4)	10000	(689)
4	4.000	(101.6)	X42	0.500	(12.7)	18.69	(27.84)	3.000	(76.2)	8400	(579)
4	4.000	(101.6)	X60	0.500	(12.7)	18.69	(27.84)	3.000	(76.2)	10000	(689)
4 ^a	4.000	(101.6)	X70	0.250	(6.4)	10.01	(14.91)	3.500	(88.8)	7000	(482)
4 ¹ /2	4.500	(114.3)	X52	0.750	(19.1)	30.04	(44.74)	3.000	(76. 1)	10000	(689)
4 ¹ /2 ^a	4.500	(114.3)	X70	0.281	(7.1)	12.66	(18.86)	3.938	(100.1)	7000	(482)

Table F-2-Dimensions, Weights, and Test Pressures for TFL Pipe

^aStandard size, weight, and grade.

Note: The calculation is an approximation of the effective hoop stress (SE), which is practical for application under mill pipe testing conditions. Other calculations provide closer approximations of effective hoop stress but are complex and therefore impractical for application.

SR14.2 The test pressure calculated shall be rounded to the nearest 10 psi (100 kPa).

SR14.3 The hydrostatic test pressure compensated for pipe end loading shall be calculated according to the following equation:

U.S. customary unit equation:

 $P_{I} = \frac{\frac{P_{R}A_{R}}{-A_{P}}}{\frac{D}{2t} - \frac{A_{I}}{-A_{P}}}$

Metric equation:

$$P_{I} = 1000 \frac{S_{E} - \frac{P_{R}A_{R}}{A_{P}}}{\frac{D}{2t} - \frac{A_{I}}{A_{P}}}$$

Where:

 A_1 = internal cross-sectional area of pipe.

 A_P = cross-sectional area of pipe wall.

 A_R = cross-sectional area of ram.

 P_1 = hydrostatic test pressure in psi (kPa).

 P_R = internal pressure on end sealing ram.

 S_E = effective hoop stress in psi (MPa) equal to a percentage of the specified minimum yield strength.

D = specified outside diameter, in. (mm).

t = specified wall thickness, in. (mm).

SR14.4 The above equation may be manipulated algebraically to provide calculation in other terms appropriate to the manufacturer's testing facility.

SR14.5 Appropriate techniques for controlling effective hoop stress based on measurements of internal pipe and ram pressures vary according to hydrotester system design. The manufacturer shall provide a control technique appropriate to his installation.

SR15 Test Certificates for Line Pipe

SR15.1 The manufacturer shall provide the following data, as applicable, for each item for which this supplementary requirement is specified on the purchase order. The manufacturer's certificate shall state the API specification and date of revision to which pipe was manufactured.

a. Specified diameter, wall thickness, grade, process of manufacture, and type of heat treatment.

b. Chemical analyses (heat, product, control, and recheck) showing the weight in percent of all elements whose limits or reporting requirements are set in this specification.

c. Test data for all tensile tests required by this specification, including yield strength, ultimate tensile strength, and elongation. The type, size, and orientation of specimens shall be shown.

d. Fracture toughness test results (including test type and criteria and the size, location, and orientation of the specimen) where such testing is specified by the purchaser.

e. Minimum hydrostatic test pressure and duration.

f. For welded pipe for which nondestructive inspection of the weld seam is required by this specification, the method of nondestructive inspection employed (radiological, ultrasonic, electromagnetic, and/or magnetic particle), and the type and size of all penetrameters and reference standards used.

g. For seamless pipe for which nondestructive inspection (SR4) is specified by the purchaser, the method of inspection employed (ultrasonic, electromagnetic, or magnetic particle), and the type and size of the reference standard used.

h. For electric-welded pipe, the minimum temperature for heat treatment of the weld seam. Where such heat treatment is not performed, the words "No Seam Heat Treatment" shall be stated on the certificate.

i. Results of any supplemental testing required by the purchaser.

SR15.2 The manufacturer shall establish and follow procedures for maintaining heat and lot identity of all pipe covered by this supplementary requirement. The procedures shall provide means for tracing any length of pipe or coupling to the proper heat and lot and to all applicable chemical and mechanical test results.

SR17 Nondestructive Inspection of Welds in Electric-Welded Pipe

SR17.1 SUPPLEMENTARY NONDESTRUCTIVE INSPECTION

The weld in electric-welded pipe shall be inspected full length for surface and subsurface defects by either ultrasonicor electromagnetic methods. The location of the equipment in the mill shall be at the discretion of the manufacturer. However, the nondestructive inspection must take place after all heat treating, hydrostatic testing, expansion, and rotary straightening operations, if performed, but may take place before cropping, beveling, and sizing of pipe.

SR17.2 EQUIPMENT AND REFERENCE STANDARDS

The ultrasonic or electromagnetic inspection equipment requirements are given in 9.7.4.1, and the reference standards are described in 9.7.4.2. Details of the specific techniques (such as method, reference standards, transducer properties, and sensitivity) shall be agreed upon between the purchaser and the manufacturer for the implementation of this supplementary requirement.

SR17.3 ACCEPTANCE LIMITS AND EMI INSPECTIONS

Table 20 gives the height of acceptance limit signals in percent of height of signals produced by reference standards. An imperfection that produced a signal greater than the acceptance limit signal given in Table 20 shall be classified as a defect.

SR17.4 DISPOSITION

Defects shall be disposed of in accordance with 9.7.5.4, Items a, c, and d. Repair by welding is not permitted. If a defect is removed by grinding, the ground area shall be reinspected by the same method originally used.

SR17.5 MARKING

Pipe nondestructively inspected in accordance with this supplementary requirement shall be marked SR17.

SR18 Carbon Equivalent

SR18.1 For pipe grades up to Grade X70 inclusive, the carbon equivalent, *CE*, calculated using product analysis and the following equation shall not exceed 0.43 percent:

$$CE = C + \frac{Mn}{6} + \frac{Cr + Mo + V}{5} = \frac{Ni + Cu}{15}$$

SR18.2 The elements analyzed for product analysis shall include all elements contained in the carbon equivalent equation.

APPENDIX G—GUIDED-BEND TEST JIG DIMENSIONS (NORMATIVE)

Table G-1 contains guided-bend test jig dimensions discussed in 9.8.3.

€	3	0	(3)	Ĭ	(4)		(5)		(9)	-	(7)	-	(8)		(6)		(01)		(11)
	II S M								Dii	Dimension A									
Size	Thickness,	F	Grade A	Grades B &	B & X42		X46	r.	X52	ĥ	X56		X60		X65		X70		X80
Designation r (in.)	r(in.)	Ë.	uu	'n.	mm	.=	uu	in.	mm	in.	шш	ij.	mm	in.	m	in.		. <u>.</u>	um
123/4	.172	1.0	25.4	1.4	35.6	1.4	35.6	1.6	40.6	1.6	40.6	1.6	40.6	1.6	40.6	1.9	48.3	2.2	55.9
12 ³ /4	.188	1.2	30.5	1.4	35.6	1.6	40.6	1.6	40.6	1.9	48.3	1.9	48.3	1.9	48.3	2.2	55.9	2.6	66.0
12 ³ /4	.203	I		1.6	40.6	1.6	40.6	1.9	48.3	1.9	48.3	2.2	55.9	2.2	55.9	2.2	55.9	2.6	66.0
12 ³ /4	.219	I .4	35.6	1.6	40.6	1.9	48.3	1.9	48.3	2.2	55.9	2.2	55.9	2.2	55.9	2.6	66.0	3.1	78.7
12 ³ /4 ·	.250	1.6	40.6	2.2	55.9	2.2	55.9	2.2	55.9	2.6	66.0	2.6	66.0	2.6	66.0	3.1	78.7	3.7	94.0
12 ³ /4	.281	6:1	48.3	2.2	55.9	2.6	66.0	2.6	66.0	3.1	78.7	3.1	78.7	3.1	78.7	3.7	94.0	4.4	111.8
12 ³ /4	.312	2.2	55.9	2.6	66.0	2.6	66.0	3.1	78.7	3.1	78.7	3.7	94.0	3.7	94.0	3.7	94.0	5.2	132.1
12 ³ / ₄	.330	2.2	55.9	3.1	78.7	3.1	78.7	3.1	78.7	3.7	94.0	3.7	94.0	3.7	94.0	4.4	111.8	5.2	132.1
12 ³ /4	344	2.2	55.9	3.1	78.7	3.1	78.7	3.7	94.0	3.7	94.0	3.7	94.0	4.4	111.8	4.4	111.8	5.2	132.1
12 ³ / ₄	.375	2.6	66.0	3.1	78.7	3.7	94.0	3.7	94.0	4,4	111.8	4.4	111.8	4.4	111.8	5.2	132.1	6.2	157.5
12 ³ / ₄	.406	1	1	3.7	94.0	3.7	94.0	4.4	111.8	4.4	111.8	5.2	132.1	5.2	132.1	6.2	157.5	7.4	188.0
12 ³ /4	.438	3.1	78.7	4.4	111.8	4.4	111.8	5.2	132.1	5.2	132.1	6.2	157.5	6.2	157.5	6.2	157.5	8.8	223.5
12 ³ /4	.500	ŀ	ł	5.2	132.1	5.2	132.1	6.2	157.5	6.2	157.5	7.4	188.0	7.4	188.0	8.8	223.5	10.5	266.7
12 ³ /4	.562	4.4	111.8	6.2	157.5	6.2	157.5	7.4	188.0	7.4	188.0	8.8	223.5	8.8	223.5	10.5	266.7	12.6	320.0
12 ³ /4	.625	5.2	132.1	7.4	188.0	7.4	188.0	8.8	223.5	10.5	266.7	10.5	266.7	10.5	_ 266.7	12.6	320.0	18.1	459.7
12 ³ /4	.688	6.2	157.5	8.8	223.5	8.8	223.5	10.5	266.7	12.6	320.0	12.6	320.0	15.1	383.5	18.1	459.7	26.0	660.4
12 ³ / ₄	.750	7.4	188.0	10.5	266.7	10.5	266.7	12.6	320.0	15.1	383.5	15.1	383.5	18.1	459.7	21.7	551.2	31.2	792.5
123/4	.812	8.8	223.5	12.6	320.0	12.6	320.0	15.1	383.5	18.1	459.7	21.7	551.2	21.7	551.2	26.0	660.4	31.2	792.5
12 ³ /4	.875	10.5	266.7	15.1	383.5	18.1	459.7	18.1	459.7	21.7	551.2	26.0	660.4	31.2	792.5	31.2	792.5	31.2	792.5
14	.188	1.2	30.5	I .4	35.6	1.6	40.6	1.6	40.6	1.6	40.6	1.9	48.3	1.9	48.3	2.2	55.9	2.6	66.0
14	.203	1.2	30.5	1.6	40.6	I	ł	-	1	1	ļ	ł	ł	I	l	I	1	2.6	66.0
14	.210	I	ļ	1.6	40.6	1.6	40.6	1.9	48.3	1.9	48.3	2.2	55.9	2.2	55.9	2.2	55.9	2.6	66.0
14	-219	١	1	1.6	40.6	1.9	48.3	1.9	48.3	2.2	55.9	2.2	55.9	2.2	55.9	2.6	66.0	3.1	78.7
14	.250	1.6	40.6	1.9	48.3	2.2	55.9	2.2	55.9	2.6	66.0	2.6	66.0	2.6	66.0	3.1	78.7	3.7	94.0
4	.281	1.9	48.3	2.2	55.9	2.6	66.0	2.6	66.0	2.6	66.0	3.1	78.7	3.1	78.7	3.1	78.7	4.4	111.8
14	.312	1.9	48.3	2.6	66.0	2.6	66.0	3.1	78.7	3.1	78.7	3.7	94.0	3.7	94.0	3.7	94.0	4.4	111.8
14	.344	2.2	55.9	3.1	78.7	3.1	78.7	3.1	78.7	3.7	94.0	3.7	94.0	3.7	94.0	4.4	111.8	5.2	132.1
14	.375	2.6	66.0	3.1	78.7	3.7	94.0	3.7	94.0	4.4	111.8	4.4	111.8	4.4	8.111	5.2	132.1	6.2	157.5
4	.406	ļ	1	3.7	94.0	3.7	94.0	4.4	111.8	4.4	111.8	5.2	132.1	5.2	132.1	5.2	132.1	7.4	188.0
14	.438	3.1	78.7	3.7	94.0	4.4	111.8	4.4	111.8	5.2	132.1	5.2	132.1	5.2	132.1	6.2	157.5	7.4	188.0
14	.469	1	1	4.4	111.8	4.4	111.8	5.2	132.1	5.2	132.1	6.2	157.5	6.2	157.5	7.4	188.0	8.8 8.8	223.5
14	-200	3.7	94.0	5.2	132.1	5.2	132.1	5.2	132.1	6.2	157.5	6.2	157.5	7.4	188.0	7.4	188.0	10.5	266.7
4	.562	4.4	111.8	6.2	157.5	6.2	157.5	6.2	157.5	7.4	188.0	8.8	223.5	8.8	223.5	8.8	223.5	12.6	320.0
14	.625	5.2	132.1	7.4	188.0	7.4	188.0	8.8	223.5	8.8	223.5	10.5	266.7	10.5	266.7	12.6	320.0	15.1	383.5
14	.688	6.2	157.5	8.8	223.5	8.8	223.5	10.5	266.7	10.5	266.7	12.6	320.0	12.6	320.0	15.1	383.5	18.1	459.7

API SPECIFICATION 5L

98

Copyright by the American Petroleum Institute Wed Apr 12 11:25:21 2000

ned
ntin
ပို
-suc
ensic
Di
Jig [
Test
pue
Щ р
uide
G
Ģ
able
Ë

Ę	ę		(5)				(5)		(9)		E		(8)	(6)		Ē	(10)		(11)
Ξ	(7)		6		E					Dimension A									
	Wall	1	Grade A	Grades	Grades B & X42		X46		X52		X56	×	X60	×	X65	×	X70		X80
Designation t (in.)	Intekness,	1	mm		uu	.≓	m	ij.	шш	in.	шш	. <u></u>	uu	Ŀ.	шш	'n.	шш		шш
14	.750	6.2	157.5	8.8	223.5	10.5	266.7	10.5	266.7	12.6	320.0	15.1	383.5	15.1	383.5	18.1	459.7	26.0	660.4
14	.812	7.4	188.0	10.5	266.7	I	ł	ł	Ι	1	I	ļ	ł		ļ	I	ł	1	I
14	.812	7.4	188.0	10.5	266.7	12.6	320.0	12.6	320.0	15.1	383.5	18.1	459.7	18.1	459.7	21.7	551.2	31.2	792.5
14	.875	8.8	223.5	12.6	320.0	15.1	383.5	15.1	383.5	18.1	459.7	21.7	551.2	21.7	551.2	31.2	792.5	31.2	792.5
14	938	10.5	266.7	15.1	383.5	18.1	459.7	21.7	551.2	21.7	551.2	26.0	660.4	31.2	792.5	31.2	792.5	31.2	792.5
JK	188	1 2	305	4	35.6	1.6	40.6	1.6	40.6	1.6	40.6	1.9	48.3	1.9	48.3	2.2	55.9	2.6	66.0
2 12	203	12	30.5	1.6	40.6	1.6	40.6	1.6	40.6	1.9	48.3	6.1	48.3	2.2	55.9	2.2	55.9	2.6	66.0
2 12	219	4	35.6	1.6	40.6	1.9	48.3	1.9	48.3	2.2	55.9	2.2	55.9	2.6	55.9	2.6	66.0	3.1	78.7
2 9	250	1.6	40.6	1.9	48.3	2.2	55.9	2.2	55.9	2.2	55.9	2.6	66.0	2.6	66.0	2.6	66.0	3.1	78.7
91	281	1-6	40.6	2.2	55.9	2.2	55.9	2.6	66.0	2.6	66.0	3.1	78.7	3.1	78.7	3.1	78.7	3.7	94.0
2 91	312	6.1	48.3	2.6	66.0	2.6	66.0	3.1	78.7	3.1	78.7	3.1	78.7	3.1	78.7	3.7	94.0	4.4	111.8
16	344	2.2	55.9	2.6	66.0	3.1	78.7	3.1	78.7	3.7	94.0	3.7	94.0	3.7	94.0	4.4	111.8	5.2	132.1
19	375	2.6	66.0	3.1	78.7	3.1	78.7	3.7	94.0	3.7	94.0	4.4	111.8	4.4	111.8	4.4	111.8	6.2	157.5
9	406		1	3.7	94.0	3.7	94.0	3.7	94.0	4.4	111.8	4.4	111.8	5.2	132.1	5.2	132.1	6.2	157.5
16	438	3.1	78.7	3.7	94.0	4.4	111.8	4.4	111.8	5.2	132.1	5.2	132.1	5.2	132.1	6.2	157.5	7.4	188.0
16	469	ł	I	4,4	111.8		111.8	5.2	132.1	5.2	132.1	5.2	132.1	6.2	157.5	6.2	157.5	7.4	188.0
16	500	3.7	94.0	4.4	111.8	5.2	132.1	5.2	132.1	6.2	157.5	6.2	157.5	6.2	157.5	7.4	188.0	8.8	223.5
16	.562	4.4	111.8	5.2	132.1	6.2	157.5	6.2	157.5	7.4	188.0	7.4	188.0	7.4	188.0	8.8	223.5	10.5	266.7
16	.625	4.4	111.8	6.2	157.5	6.2	157.5	7.4	188.0	8.8	223.5	8.8	223.5	8.8	223.5	10.5	266.7	12.6	320.0
16	.688	5.2	132.1	7.4	188.0		188.0	8.8	223.5	10.5	266.7	10.5	266.7	10.5	266.7	12.6	320.0	15.1	383.5
16	.750	6.2	157.5	8.8	223.5	8.8		10.5	266.7	10.5	266.7	12.6	320.0	12.6	320.0	15.1	383.5	21.7	551.2
16	.812	7.4	188.0	10.5	266.7	10.5	266.7	12.6	320.0	12.6	320.0	15.1	383.5	15.1	383.5	18.1	459.7	26.0	660.4
16	.875	7.4	188.0	10.5	266.7	12.6	320.0	12.6	320.0	15.1	383.5	18.1	459.7	18.1	459.7	21.7	551.2	31.2	792.5
16	.938	8.8		12.6	320.0		383.5	15.1	383.5	18.1	459.7	21.7	551.2	21.7	551.2	26.0	660.4	31.2	792.5
16	000'1	10.5	266.7	15.1	383.5	15.1	383.5	18.1	459.7	21.7	551.2	26.0	564.2	26.0	564.2	31.2	792.5	31.2	792.5
16	1.062	10.5	266.7	18.1	459.7	18.1	459.7	21.7	551.2	26.0	564.2	31.2	792.5	31.2	792.5	31.2	792.5	31.2	792.5
16	1.125	12.6	320.0	21.7	551.2	21.7	551.2	26.0	564.2	31.2	792.5	31.2	792.5	31.2	792.5	31.2	792.5	31.2	792.5
18	188	0.1	25.4	1.4	35.6	1.4	35.6	1.6	40.6	9.1	40.6	1.9	48.3	1.9	48.3	1.9	48.3	ļ	I
o <u>o</u>	910	14		1.6	40.6			1.9	48.3	1.9	48.3	2.2	55.9	2.2	55.9	2.2	55.9	2.6	66.0
2 2	250	1.6		1.9	48.3			2.2	55.9	2.2	55.9	2.6	66.0	2.6	66.0	2.6	66.0	3.1	78.7
2 2	781	91		2.2	55.9			2.6	66.0	2.6	66.0	2.6	66.0	3.1	78.7	3.1	78.7	3.7	94.0
	312	6.1		2.6	66.0	2.6	-	2.6	66.0	3.1	78.7	3.1	78.7	3.1	78.7	3.7	94.0	4.4	111.8
8	8 45	2.2		2.6	66.0			3.1	78.7	3.7	94.0	3.7	94.0	3.7	94.0	4.4	111.8	5.2	132.1
18	.375	2.2		3.1	78.7			3.7	94.0	3.7	94.0	3.7	94.0	4.4	111.8	4.4	111.8	5.2	132.1

SPECIFICATION FOR LINE PIPE

	(7)	_	(3)		(4)		(2)		(9)		(L)		(8)	_	(6)	ľ	(10)		(11)
	Wall								Ğ	Dimension A	V								
Size			Grade A	Grades	Grades B & X42		X46		<u>X52</u>	*	X56	^	X60		X65		X70		X80
Designation	1	.ei	m	'n.	mu	.E	шш	ij.	ШШ	in.	uu	in.	uu	in.	шш	'n.	ШШ	.e	шш
8	.406	Ι	Ι	3.1	78.7	3.7	94.0	3.7	94.0	4.4	111.8	4 .4	111.8	4.4	111.8	5.2	132.1	6.2	157.5
18	.438	3.1	78.7	3.7	94.0	3.7	94.0	4.4	111.8	4.4	111.8	5.2	132.1	5.2	132.1	5.2	132.1	7.4	188.0
81	.469	1	I	4.4	111.8	4.4	111.8	4.4	111.8	5.2	132.1	5.2	132.1	5.2	132.1	6.2	157.5	7.4	188.0
18	.500	3.1	78.7	4.4	111.8	4.4	111.8	5.2	132.1	5.2	132.1	6.2	157.5	6.2	157.5	6.2	157.5	8.8	223.5
18	.562	3.7	94.0	5.2	132.1	5.2	132.1	6.2	157.5	6.2	157.5	7.4	188.0	7.4	188.0	7.4	188.0	10.5	266.7
18	.625	4.4	8.111	6.2	157.5	6.2	157.5	7.4	188.0	7.4	188.0	8.8	223.5	8.8	223.5	8.8	223.5	12.6	320.0
18	.688	5.2	132.1	7.4	188.0	7.4	188.0	7.4	188.0	8.8	223.5	8.8	223.5	10.5	266.7	10.5	266.7	15.1	383.5
18	.750	6.2	157.5	7.4	188.0	8.8	223.5	8.8	223.5	10.5	266.7	10.5	266.7	12.6	320.0	12.6	320.0	18.1	459.7
18	.812	6.2	157.5	8.8	223.5	8.8	223.5	10.5	266.7	12.6	320.0	12.6	320.0	12.6	320.0	15.1	383.5	21.7	551.2
18	.875	7.4	188.0	10.5	266.7	10.5	266.7	12.6	320.0	12.6	320.0	13.1	383.5	15.1	383.5	18.1	459.7	26.1	662.9
18	938	8.8	223.5	12.6	320.0	12.6	320.0	15.1	383.5	15.1	383.5	18.1	459.7	18.1	459.7	21.7	551.2	31.2	792.5
18	1.000	8.8	223.5	12.6	320.0	15.1	383.5	15.1	383.5	18.1	459.7	21.7	551.2	21.7	551.2	26.0	660.4	31.2	792.5
18	1.062	10.5	266.7	15.1	383.5	15.1	383.5	18.1	459.7	21.7	551.2	21.7	551.2	26.0	660.4	31.2	792.5	31.2	792.5
18	1.125	10.5	266.7	18.1	459.7	18.1	459.7	21.7	551.2	26.0	660.4	26.0	660.4	31.2	782.5	31.2	792.5	31.2	792.5
18	1.188	12.6	320.0	18.1	459.7	21.7	551.2	26.0	660.4	31.2	792.5	31.2	792.5	31.2	792.5	31.2	792.5	31.2	792.5
18	1.250	15.1	383.5	21.7	551.2	26.0	660.4	26.0	660.4	31.2	792.5	31.2	792.5	31.2	792.5	31.2	792.5	31.2	792.5
20	219	1.2	30.5	1.6	40.6	1.6	40.6	1.9	48.3	1.9	48.3	2.2	55.9	2.2	55.9	2.2	55.9	2.6	66.0
50	.250	1.6	40.6	1.9	48.3	1.9	48.3	2.2	55.9	2.2	55.9	2.6	66.0	2.6	66.0	2.6	66.0	3.1	78.7
50	.281	1.6	40.6	2.2	55.9	2.2	55.9	2.6	66.0	2.6	66.0	2.6	66.0	3.1	78.7	3.1	78.7	3.7	94.0
50	.312	1.9	48.3	2.6	66.0	2.6	66.0	2.6	66.0	3.1	78.7	3.1	78.7	3.1	78.7	3.7	94.0	4.4	111.8
8	344	2.2	55.9	2.6	66.0	3.1	78.7	3.1	78.7	3.1	78.7	3.7	94.0	3.7	94.0	3.7	94.0	4.4	111.8
ล	.375	2.2	55.9	3.1	78.7	3.1	78.7	3.7	94.0	3.7	94.0	3.7	94.0	3.7	94.0	4.4	111.8	5.2	132.1
8	406	I	1	3.1	78.7	3.7	94.0	3.7	94.0	4.4	111.8	4.4	111.8	4.4	111.8	5.2	132.1	6.2	157.5
20	.438	2.6	66.0	3.7	94.0	3.7	94.0	4.4	111.8	4.4	111.8	4.4	111.8	5.2	132.1	5.2	132.1	6.2	157.5
ຊ	.469	I	I	3.7	94.0	4.4	111.8	4.4	111.8	5.2	132.1	5.2	132.1	5.2	132.1	6.2	157.5	7.4	188.0
ន	500	3.1	78.7	4.4	111.8	4.4	111.8	5.2	132.1	5.2	132.1	5.2	132.1	6.2	157.5	6.2	157.5	7.4	188.0
20	.562	3.7	94.0	5.2	132.1	5.2	132.1	6.2	157.5	6.2	157.5	6.2	157.5	7.4	188.0	7.4	188.0	8.8	223.5
20	.625	4,4	111.8	6.2	157.5	6.2	157.5	6.2	157.5	7.4	188.0	7.4	188.0	7.4	188.0	8.8	223.5	10.5	266.7
8	.688	5.2	132.1	6.2	157.5	7.4	188.0	7.4	188.0	8.8	223.5	8.8	223.5	8.8	223.5	10.5	266.7	12.6	320.0
20	.750	5.2	132.1	7.4	188.0	7.4	188.0	8.8	223.5	8.8	223.5	10.5	266.7	10.5	266.7	12.6	320.0	15.1	383.5
50	.812	6.2	157.5	8.8	223.5	8.8	223.5	10.5	266.7	10.5	266.7	12.6	320.0	12.6	320.0	15.1	383.5	18.1	459.7
20	.875	7.4	188.0	8.8	223.5	10.5	266.7	10.5	266.7	12.6	320.0	12.6	320.0	15.1	383.5	15.1	383.5	21.7	551.2
20	.938	7.4	188.0	10.5	266.7	10.5	266.7	12.6	320.0	15.1	383.5	15.1	383.5	15.1	383.5	18.1	459.7	26.0	660.4
50	1.000	8.8	223.5	12.6	320.0	12.6	320.0	15.1	383.5	15.1	383.5	18.1	459.7	18,1	459.7	21.7	551.2	317	707 5
																		1	

API SPECIFICATION 5L

100

Copyright by the American Petroleum Institute Wed Apr 12 11:25:24 2000 _ _ _

Wall - Size Thickness. Size Thickness. 20 1.125 1 20 1.188 1 20 1.150 1 20 1.312 1 20 1.312 1 20 1.375 1 20 1.375 1 21 22 219 22 219 22 219 23 250 23 250 23 250 23 250 24 4	N 0 0 - 1									(1)	`	(0)	د	(2)	•	(11)	-	(11)
National Size Thicking Size Thicking Size 20 1.125 20 1.187 20 1.187 20 1.137 20 1.375 20 1.375 20 1.375 20 1.375 20 1.375 20 1.375 20 1.375 20 1.375 20 1.375 20 1.375 20 1.375 20 1.375 20 1.375 20 20 1.375 20 20 20 20 20 20 20 20 20 20 20 20 20	N 0 0 1 - 1							Din	Dimension A									
ssignation 1 (m 20 1.125 20 1.188 20 1.312 20 1.312 20 1.375 20 1.375 20 1.375 20 1.375 215 22 21 231 234 234	i 10.5 8 10.5 9 12.6	Grade A	Grades B &	B & X42		X46	×	X52	X	X56	×	X60	x	X65	~	X70		X80
		mm	in.	шш	in.	шш	i.	шш	ij.	шш	'n.	mm	іп.	uuu	.d	uu	.i	E
		266.7	15.1	383.5	15.1	383.5	18.1	459.7	21.7	551.2	21.7	551.2	26.0	660.4	31.2	792.5	31.2	792.5
		266.7	18.1	459.7	18.1	459.7	21.7	551.2	26.0	660.4	26.0	660.4	26.0	660.4	31.2	792.5	31.2	792.5
		320.0	18.1	459.7	21.7	551.2	21.7	551.2	26.0	660.4	31.2	792.5	31.2	792.5	31.2	792.5	31.2	792.5
	2 12.6	320.0	21.7	551.2	21.7	551.2	26.0	660.4	31.2	792.5	31.2	792.5	31.2	792.5	31.2	792.5	31.2	792.5
	5 15.1	383.5	21.7	551.2	26.0	660.4	31.2	792.5	31.2	792.5	31.2	792.5	31.2	792.5	31.2	792.5	31.2	792.5
	1.2	30.5	1.6	40.6	1.6	40.6	, 6:1	48.3	1.9	48.3	2.2	55.9	2.2	55.9	2.2	55.9	2.6	66.0
		35.6	1.9	48.3	1.9	48.3	2.2	55.9	2.2	55.9	2.6	66.0	2.6	66.0	2.6	66.0	3.1	78.7
		40.6	2.2	55.9	2.2	55.9	2.6	66.0	2.6	66.0	2.6	66.0	2.6	66.0	3.1	78.7	3.7	94.0
	2 1.9	48.3	2.6	66.0	2.6	66.0	2.6	66.0	3.1	78.7	3.1	78.7	3.1	78.7	3.7	94.0	4.4	111.8
	1 2.2	55.9	2.6	66.0	2.6	66.0	3.1	78.7	3.1	78.7	3.7	94.0	3.7	94.0	3.7	94.0	4.4	111.8
CIC: 77	5 2.2	55.9	3.1	78.7	3.1	78.7	3.1	78.7	3.7	94.0	3.7	94.0	3.7	94.0	4.4	111.8	5.2	132.1
22 .406	1	I	3.1	78.7	3.7	94.0	3.7	94.0	3.7	94.0	4.4	111.8	4.4	111.8	4.4	111.8	6.2	157.5
	3 2.6	66.0	3.7	94.0	3.7	94.0	3.7	94.0	4.4	111.8	4.4	111.8	5.2	132.1	5.2	132.1	6.2	157.5
		ł	3.7	94.0	4.4	111.8	4.4	111.8	4.4	111.8	5.2	132.1	5.2	132.1	6.2	157.5	7.4	188.0
22 .500	3.1	78.7	4.4	111.8	4.4	111.8	4.4	111.8	5.2	132.1	5.2	132.1	5.2	132.1	6.2	157.5	7.4	188.0
22 .562	2 3.7	94.0	5.2	132.1	5.2	132.1	5.2	132.1	6.2	157.5	6.2	157.5	6.2	157.5	7.4	188.0	8.8	223.5
22 .625	5 4.4	111.8	5.2	132.1	6.2	157.5	6.2	157.5	7.4	188.0	7.4	188.0	7.4	188.0	8.8	223.5	10.5	266.7
22 .688	3 5.2	132.1	6.2	157.5	6.2	157.5	7.4	188.0	7.4	188.0	8.8	223.5	8.8	223.5	10.5	266.7	12.6	320.0
		132.1	7.4	188.0	7.4	188.0	8.8	223.5	8.8	223.5	10.5	266.7	10.5	266.7	10.5	266.7	15.1	383.5
			7.4	188.0	8.8	223.5	8.8	223.5	10.5	266.7	10.5	266.7	10.5	266.7	12.6	320.0	15.1	383.5
22 .875	5 6.2	157.5	8.8	223.5	8.8	223.5	10.5	266.7	12.6	320.0	12.6	320.0	12.6	320.0	15.1	383.5	18.1	459.7
	8 7.4	188.0	10.5	266.7	10.5	266.7	12.6	320.0	12.6	320.0	15.1	383.5	15.1	383.5	18.1	459.7	21.7	551.2
22 1.000	D 7.4	188.0	10.5	266.7	12.6	320.0	12.6	320.0	15.1	383.5	15.1	383.5	18.1	459.7	18.1	459.7	26.0	660.4
22 1.062		223.5	12.6	320.0	12.6	320.0	15.1	383.5	15.1	383.5	18.1	459.7	18.1	459.7	21.7	551.2	31.2	792.5
22 1.125	5 10.5	266.7	12.6	320.0	15.1	383.5	15.1	383.5	18.1	459.7	21.7	551.2	21.7	551.2	26.0	660.4	31.2	792.5
22 1.188	8 10.5	266.7	15.1	383.5	15.1	383.5	18.1	459.7	21.7	551.2	21.7	551.2	26.0	660.4	31.2	792.5	31.2	792.5
			18.1	459.7	18.1	459.7	21.7	551.2	21.7	551.2	26.0	660.4	26.0	660.4	31.2	792.5	31.2	792.5
			18.1	459.7	21.7	551.2	21.7	551.2	26.0	660.4	31.2	792.5	31.2	792.5	31.2	792.5	31.2	792.5
			21.7	551.2	21.7	551.2	26.0	660.4	31.2	792.5	31.2	792.5	31.2	792.5	31.2	792.5	31.2	792.5
			21.7	551.2	26.0	660.4	31.2	792.5	31.2	792.5	31.2	792.5	31.2	792.5	31.2	792.5	31.2	792.5
		383.5	26.0	660.4	26.0	660.4	31.2	792.5	31.2	792.5	31.2	792.5	31.2	792.5	31.2	792.5	31.2	792.5
24250	0 1.4	35.6	1.9	48.3	1.9	48.3	2.2	55.9	2.2	55.9	2.2	55.9	2.6	66.0	2.6	66.0	3.1	78.7
24 .28			2.2	55.9	2.2	55.9	2.2	55.9	2.6	66.0	2.6	66.0	2.6	66.0	3.1	78.7	3.7	94.0
24 .312	2 1.9	48.3	2.2	55.9	2.6	66.0	2.6	66.0	3.1	66.0	3.1	78.7	3.1	78.7	3.7	94.0	4.4	111.8

(

Copyright by the American Petroleum Institute Wed Apr 12 11:25:26 2000

SPECIFICATION FOR LINE PIPE

101

Size Designation	1-)	-	(C)	Ċ	(4)		(5)		(9))	(1))	(8)	-	(6))	(10)	<u> </u>	(11)
Size esignatio	Mall.								Dir	Dimension A	ł								
esignation	Thickness,	-	Grade A	Grades B & X	B & X42		X46		X52	×	X56		X60		X65		X70		X80
	n t (in.)	.ei	Ē	,ei	mm	'n.	mm	Ľ	mm	in.	uu	in.	mm	in.	mm	in.	mm	in.	шш
24	.344	2.2	55.9	2.6	66.0	2.6	66.0	3.1	78.7	3.1	78.7	3.7	94.0	3.7	94.0	3.7	94.0	4.4	111.8
24	.375	2.2	55.9	3.1	78.7	3.1	78.7	3.1	78.7	3.7	94.0	3.7	94.0	3.7	94.0	4.4	111.8	5.2	132.1
24	.406	1	I	3.1	78.7	3.1	78.7	3.7	94.0	3.7	94.0	4.4	111.8	4.4	111.8	4.4	111.8	5.2	132.1
24	.438	2.6	66.0	3.7	94.0	3.7	94.0	3.7	94.0	4 .4	111.8	4.4	111.8	4.4	111.8	5.2	132.1	6.2	157.5
24	.469	I	1	3.7	94.0	3.7	94.0	4,4	111.8	4.4	111.8	5.2	132.1	5.2	132.1	5.2	132.1	6.2	157.5
24	500	3. F	78.7	4.4	111.8	4.4	111.8	4.4	111.8	5.2	132.1	5.2	132.1	5.2	132.1	6.2	157.5	7.4	188.0
24	.562	3.7	94.0	4,4	111.8	5.2	132.1	5.2	132.1	6.2	157.5	6.2	157.5	6.2	157.5	7.4	188.0	8.8	223.5
24	.625	4.4	111.8	5.2	132.1	6.2	157.5	6.2	157.5	6.2	157.5	7.4	188.0	7.4	188.0	8.8	223.5	10.5	266.7
24	.688	4.4	111.8	6.2	157.5	6.2	157.5	7.4	188.0	7.4	188.0	8.8	223.5	8.8	223.5	8.8	223.5	12.6	320.0
24	.750	5.2	132.1	7,4	188.0	7.4	188.0	7,4	188.0	8.8	223.5	8.8 8.8	223.5	8.8	223.5	10.5	266.7	12.6	320.0
24	.812	6.2	157.5	7.4	188.0	8.8	223.5	8.8	223.5	10.5	266.7	10.5	266.7	10.5	266.7	12.6	320.0	15.1	383.5
24	.875	6.2	157.5	8.8	223.5	8.8	223.5	10.5	266.7	10.5	266.7	12.6	320.0	12.6	320.0	12.6	320.0	18.1	459.7
24	.938	7.4	188.0	8,8	223.5	10.5	266.7	10.5	266.7	12.6	320.0	12.6	320.0	12.6	320.0	15.1	383.5	21.7	551.2
24	1.000	7.4	188.0	10.5	266.7	10.5	266.7	12.6	320.0	12.6	320.0	15.1	383.5	15.1	383.5	18.1	459.7	21.7	551.2
24	1.062	8.8	223.5	12.6	320.0	12.6	320.0	12.6	320.0	15.1	383.5	15.1	383.5	18.1	459.7	18.1	459.7	26.0	660.4
24	1.125	8.8	223.5	12.6	320.0	12.6	320.0	15.1	383.5	18.1	459.7	18.1	459.7	18.1	459.7	21.7	551.2	31.2	792.5
24	1.188	10.5	266.7	15.1	383.5	15.1	383.5	18.1	459.7	18.1	459.7	21.7	551.2	21.7	551.2	26.0	660.4	31.2	792.5
24	1.250	10.5	266.7	15.1	383.5	15.1	383.5	18.1	459.7	21.7	551.2	21.7	551.2	26.0	660.4	26.0	660.4	31.2	792.5
24	1.312	12.6	320.0	18.1	459.7	18.1	459.7	21.7	551.2	21.7	551.2	26.0	660.4	26.0	660.4	31.2	792.5	31.2	792.5
54	1.375	12.6	320.0	18.1	459.7	21.7	551.2	21.7	551.2	26.0	660.4	31.2	792.5	31.2	792.5	31.2	792.5	31.2	792.5
24	1.438	15.1	383.5	21.7	551.2	21.7	551.2	26.0	660.4	31.2	792.5	31.2	792.5	31.2	792.5	31.2	792.5	31.2	792.5
24	1.500	15.1	383.5	21.7	551.2	26.0	660.4	26.0	660.4	31.2	792.5	31.2	792.5	31.2	792.5	31.2	792.5	31.2	792.5
24	1.562	15.1	383.5	26.0	660.4	26.0	660.4	31.2	792.5	31.2	792.5	31.2	792.5	31.2	792.5	31.2	792.5	31.2	792.5
26	.250	1.4	35.6	1.9	48.3	1.9	48.3	2.2	55.9	2.2	55.9	2.2	55.9	2.6	66.0	2.6	66.0	3.1	78.7
26	.281	1.6	40.6	2.2	55.9	2.2	55.9	2.2	55.9	2.6	66.0	2.6	66.0	2.6	66.0	3.1	78.7	3.7	94.0
26	.312	1.9	48.3	2.2	55.9	2.6	66.0	2.6	66.0	2.6	66.0	3.1	78.7	3.1	78.7	3.1	78.7	3.7	94.0
26	344	2.2	55.9	2.6	66.0	2.6	66.0	3.1	78.7	3.1	78.7	3.1	78.7	3.7	94.0	3.7	94.0	4.4	111.8
26	.375	2.2	55.9	3.1	78.7	3.1	78.7	3.1	78.7	3.7	94.0	3.7	94.0	3.7	94.0	4.4	111.8	5.2	132.1
26	406	1	I	3.1	78.7	3.1	78.7	3.7	94.0	3.7	94.0	4.4	111.8	4.4	111.8	4.4	111.8	5.2	132.1
26	.438	2.6	66.0	3.7	94.0	3.7	94.0	3.7	94.0	4.4	111.8	4.4	111.8	4.4	111.8	5.2	132.1	6.2	157.5
26	.469	I		3.7	94.0	3.7	94.0	4.4	111.8	4.4	111.8	5.2	132.1	5.2	132.1	5.2	132.1	6.2	157.5
26	500	3.1	78.7	3.7	94.0	4.4	111.8	4.4	132.1	5.2	132.1	5.2	132.1	5.2	132.1	6.2	157.5	7.4	188.0
26	.562	3.7	94.0	4.4	111.8	5.1	132.1	5.2	132.1	6.2	157.5	6.2	157.5	6.2	157.5	7.4	188.0	8.8	223.5
26	.625	4.4	111.8	5.2	132.1	5.2	132.1	6.2	157.5	6.2	157.5	7.4	188.0	7.4	188.0	7.4	188.0	10.5	266.7
26	.688	4.4	111.8	6.2	157.5	6.2	157.5	7.4	188.0	7.4	188.0	7.4	188.0	8.8	223.5	8.8	223.5	10.5	266.7

API SPECIFICATION 5L

.

- -

102

Copyright by the American Petroleum Institute Wed Apr 12 11:25:27 2000

Ξ	(2)		(3))	(4)		(2)		(9)		(1)	-	(8)		(6)	U	(10)		(11)
	1 10								Dir	Dimension A	4								
Size	Wall Thickness.		Grade A	Grades B	B & X42		X46		X52	×	X56		X60	X	X65	X	X70		X80
Designation	n t (in.)	. <u></u>	mm	ij.	mm	.Ľ	uu	in.	шш	Ü	uu	.u	mm	ü.	uu	.e	mm	in.	mm
26	.750	5.2	132.1	6.2	157.5	7.4	188.0	7.4	188.0	80.90 90.00	223.5	8.8	223.5	8.8	223.5	10.5	266.7	12.6	320.0
26	.812	5.2	132.1	7.4	188.0	7.4	188.0	8.8	223.5	8.8	223.5	10.5	266.7	10.5	266.7	12.6	320.0	15.1	383.5
26	.875	6.2	157.5	8.8	223.5	8.8	223.5	8.8	223.5	10.5	266.7	10.5	266.7	12.6	320.0	12.6	320.0	15.1	383.5
26	.938	7.4	188.0	8.8	223.5	10.5	266.7	10.5	266.7	12.6	320.0	12.6	320.0	12.6	320.0	15.1	383.5	18.1	459.7
36	1.000	7.4	188.0	10.5	266.7	10.5	266.7	12.6	320.0	12.6	320.0	15.1	383.5	15.1	383.5	15.1	383.5	21.7	551.2
28	.250	1.4	35.6	1.9	48.3	1.9	48.3	2.2	55.9	2.2	25.9	2.2	55.9	2.2	55.9	2.6	66.0	3.1	78.7
28	.281	1.6	40.6	2.2	55.9	2.2	55.9	2.2	55.9	2.6	66.0	2.6	66.0	2.6	66.0	3.1	78.7	3.7	94.0
28	.312	1.9	48.3	2.2	55.9	2.6	66.0	2.6	66.0	2.6	66.0	3.1	78.7	3.1	78.7	3.1	78.7	3.7	94.0
28	344	1	ł	2.6	66.0	2.6	66.0	3.1	78.7	3.1	78.7	3.1	78.7	3.7	94.0	3.7	94.0	4.4	111.8
28	.375	2.2	55.9	3.1	78.7	3.1	78.7	3.1	78.7	3.7	94.0	3.7	94.0	3.7	94.0	4.4	111.8	5.2	132.1
28	.406	Ι	Ι	3.1	78.7	3.1	78.7	3.7	94.0	3.7	94.0	3.7	94.0	4.4	111.8	4.4	111.8	5.2	132.1
28	.438	2.6	66.0	3.7	94.0	3.7	94.0	3.7	94.0	4.4	111.8	4.4	111.8	4.4	111.8	5.2	132.1	6.2	157.5
28	.469	1	1	3.7	94.0	3.7	94.0	4.4	111.8	4.4	111.8	4.4	8.111	5.2	132.1	5.2	132.1	6.2	157.5
28	500	3.1	78.7	3.7	94.0	4.4	111.8	4.4	111.8	5.2	132.1	5.2	132.1	5.2	132.1	6.2	157.5	7.4	188.0
28	.562	3.7	94.0	4.4	111.8	5.2	132.1	5.2	132.1	5.2	132.1	6.2	157.5	6.2	157.5	6.2	157.5	8.8	223.5
28	.625	3.7	94.0	5.2	132.1	5.2	132.1	6.2	157.5	6.2	157.5	7.4	188.0	7.4	188.0	7.4	188.0	8.8	223.5
28	.688	4.4	111.8	6.2	157.5	6.2	157.5	6.2	157.5	7.4	188.0	7.4	188.0	7.4	188.0	8.8	223.5	10.5	266.7
28	.750	5.2	132.1	6.2	157.5	7.4	188.0	7.4	188.0	8.8	223.5	8.8	223.5	8.8	223.5	10.5	266.7	12.6	320.0
28	.812	5.2	132.1	7,4	188.0	7.4	188.0	8.8	223.5	8.8	223.5	10.5	266.7	10.5	266.7	10.5	266.7	12.6	320.0
28	.875	6.2	157.5	7.4	188.0	8.8	223.5	8.8	223.5	10.5	266.7	10.5	266.7	10.5	266.7	12.6	320.0	15.1	383.5
28	.938	6.2	157.5	8.8	223.5	8.8	223.5	10.5	266.7	10.5	266.7	12.6	320.0	12.6	320.0	15.1	383.5	18.1	459.7
28	1.000	7.4	188.0	10.5	266.7	10.5	266.7	10.5	266.7	12.6	320.0	12.6	320.0	12.6	320.0	15.1	383.5	18.1	459.7
30	.250	1.4	35.6	1.9	48.3	1.9	48.3	2.2	55.9	2.2	55.9	2.2	55.9	2.2	55.9	2.6	66.0	3.1	78.7
30	.281	1.6	40.6	2.2	55.9	2.2	55.9	2.2	55.9	2.6	66.0	2.6	66.0	2.6	66.0	3.1	78.7	3.7	94.0
30	.312	1.9	48.3	2.2	55.9	2.6	66.0	2.6	66.0	2.6	66.0	3.1	78.7	3.1	78.7	3.1	78.7	3.7	94.0
30	344	1	1	2.6	66.0	2.6	66.0	3.1	78.7	3.1	78.7	3.1	78.7	3.1	78.7	3.7	94.0	4.4	111.8
30	.375	2.2	55.9	2.6	66.0	3.1	78.7	3.1	78.7	3.7	94.0	3.7	94.0	3.7	94.0	4.4	111.8	5.2	132.1
30	.406	1	1	3.1	78.7	3.1	78.7	3.7	94.0	3.7	94.0	3.7	94.0	4.4	111.8	4.4	111.8	5.2	132.1
30	.438	2.6	66.0	3.1	78.7	3.7	94.0	3.7	94.0	4 .4	111.8	4.4	111.8	4.4	111.8	5.2	132.1	6.2	157.5
90	.469	I	Ι	3.7	94.0	3.7	94.0	4.4	111.8	4.4	111.8	4.4	111.8	5.2	132.1	5.2	132.1	6.2	157.5
30	500	3.1	78.7	3.7	94.0	4.4	111.8	4.4	111.8	5.2	132.1	5.2	132.1	5.2	132.1	6.2	157.5	7.4	188.0
30	.562	3.7	94.0	4.4	111.8	4.4	111.8	5.2	132.1	5.2	132.1	6.2	157.5	6.2	157.5	6.2	157.5	7.4	188.0
30	.625	3.7	94.0	5.2	132.1	5.2	132.1	6.2	157.5	6.2	157.5	6.2	157.5	7.4	188.0	7.4	188.0	8.8	223.5
30	.688	4.4	111.8	6.2	157.5	6.2	157.5	6.2	157.5	7.4	188.0	7.4	188.0	7.4	188.0	8.8	223.5	10.5	266.7
30	.750	5.2	132.1	6.2	157.5	6.2	157.5	7.4	188.0	7.4	188.0	8.8	223.5	8.8	223.5	10.5	266.7	12.6	320.0

SPECIFICATION FOR LINE PIPE

(11) (10) (0)	X65 X70 X80		266.7 10.5 266.7 12.6	266.7 12.6 320.0 15.1		320.0 15.1	55.9	66.0 3.1 78.7 3.7		1 78.7 3.7 94.0 4.4 111.8	94.0 3.7 94.0 5.2	111.8 4.4 111.8 5.7	111.8 5.2 132.1 6.2	132.1 5.2 132.1 6.2	132.1 5.2 132.1 6.2	157.5 6.2 157.5 7.4	2 157.5 7.4 188.0 8.8 223.5	188.0 8.8 223.5	8 223.5 8.8 223.5 10.5 266.7	223.5 10.5 266.7 12.6	266.7 12.6	320.0 12.6 320.0 15.1	320.0 15.1 383.5 18.1	383.5 15.1 383.5 18.1	383.5 18.1 459.7 21.7	459.7 18.1 459.7 26.0	1 459.7 21.7 551.2 26.0 660.4	2 55.9 2.6 66.0 3.1 78.7	6 66.0 3.1 78.7 3.7 94.0	1 78.7 3.1 78.7 3.7 94.0	1 78.7 3.7 94.0 4.4 111.8		7 040 44 1110 53 1231	7.0 0.111 4.4 0.46
		.i	10.5	10.5		12.6		2.6			3.7	4.4	4.4	5.2		6.2	6.2	7.4	8.8		10.5	12.6	12.6	15.1			18.1) 2.6	7 3.1	7 3.1	3.7	3.7	
(8)	X60	m	223.5	266.7		320.0	52.9	-	- 78.7	78.7	94.0			111.8			157.5	188.0	223.5	223.5	266.7	266.7	320.0	320.0	383.5	383.5	459.7	55.9	66.0	78.7	78.7	94.0	94.0	
		ë.	8.8	10.5	12.6	12.6	2.2	2.6	3.1	3.1	3.7	3.7	4.4	4.4		6.2	6.2	7.4	8.8	8.8	10.5	10.5	12.6	12.6			18.1	2.2	2.6	3.1	3.1	3.7	3.7	
E	X56	mm	223.5	266.7	266.7	320.0	55.9	66.0	66.0	78.7	94.0	94.0	111.8	111.8	111.8	132.1	157.5	188.0	188.0	223.5	223.5	266.7	320.0	320.0	383.5	383.5	383.5	55.9	66.0	66.0	78.7	78.7	94.0	
() Dimension A		.E	8.8	10.5	10.5	12.6	2.2	2.6	2.6	3.1	3.7	3.7	4.4	4.4	4.4	5.2	6.2	7.4	7.4	8.8	8.8	10.5	12.6	12.6	15.1	15.1	15.1	2.2	2.6	2.6	3.1	3.1	3.7	
(9) Di	X52	E	223.5	223.5	266.7	266.7	55.9	55.9	66.0	78.7	78.7	94.0	94.0	111.8	111.8	132.1	157.5	157.5	188.0	188.0	223.5	266.7	266.7	266.7	320.0	320.0	383.5	48.3	55.9	66.0	78.7	78.7	94.0	
		.E	8.8	8.8	10.5	10.5	2.2	2.2	2.6	3.1	3.1	3.7	3.7	4.4	4.4	5.2	6.2	6.2	7.4	7.4	8.8	10.5	10.5	10.5	12.6	12.6	15.1	1.9	2.2	2.6	3.1	3.1	3.7	
(5)	X46	um	188.0	223.5	223.5	266.7	48.3	55.9	66.0	66.0	78.7	78.7	94.0	94.0	111.8	111.8	132.1	157.5	157.5	188.0	223.5	223.5	266.7	266.7	266.7	320.0	320.0	48.3	55.9	66.0	0.99	78.7	78.7	
	×	ĿĽ	7.4	8.8	8.8	10.5	61	2.2	2.6	2.6	3.1	3.1	3.7	3.7	4.4	4.4	5.2	6.2	6.2	7.4	8.8	8.8	10.5	10.5	10.5	12.6	12.6	1.9	2.2	2.6	2.6	3.1	3.1	
_	s & X42	mm (188.0	188.0	223.5	223.5	48.3	55.9	55.9	66.0	66.0	78.7	78.7	94.0	94.0	111.8	132.1	132.1	157.5	188.0	188.0	223.5	223.5	266.7	266.7	320.0	320.0	48.3	55.9	55.9	66.0	66.0	78.7	
(4)	Grades B & X	.ii	7.4	7.4	8.8	8.8	61	2.2	2.2	2.6	2.6	3.1	3.1	3.7	3.7	4.4	5.2	5.2	6.2	7.4	7.4	8.8	8.8	10.5	10.5	12.6	12.6	1.9	2.2	2.2	2.6	2.6	3.1	
	le A		132.1	157.5	157.5	188.0	35.6	40.6	48.3	I	55.9	1	66.0		78.7	94.0	94.0	111.8	132.1	132.1	157.5	157.5	188.0	188.0	223.5	223.5	223.5	35.6	40.6	48.3	ļ	55.9	I	
Ê	Grade A	1	5.2	6.2	6.2	7.4	1.4	1.6	1.9	1	2.2	I	2.6	I	3.1	3.7	3.7	4.4	5.2	5.2	6.2	6.2	7.4	7.4	8.8	80. 80	8.8	1.4	1.6	6.1	۱	2.2	Ι	
5	Wall	<i>t</i> (in.)	.812	.875	.938	000'1	.250	.281	.312	344	.375	406	.438	.469	500	-562	.625	.688	.750	.812	.875	.938	1.000	1.062	1.125	1.188	1.250	.250	.281	.312	.344	.375	.406	
Ξ	Cizo.	<u>10</u>	30	30	30	30	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	34	34	34	34	34	34	

_

- - - ----

API SPECIFICATION 5L

Size Designation 34			5	2	E		(c)		(9)	6	_	2	(8)	J)	(6)	-	(10)		(11)
Size signation 34 34									Din	Dimension A									
signation 34 34	Wall	Grade A	le A	Grades]	B & X42		X46	×	X52	X56	99	X	X60	X	X65	×	X70	×	X80
* * ;	t (in.)	Ë		.e	шШ	ü.	mm	in.	mm	i;	EE	. <u>:</u>	uu		шш	.e	mm	.i	m
* :	.562	3.7	94.0	4.4	111.8	4.4	111.8	5.2	132.1	5.2	132.1	6.2	157.5	6.2	157.5	6.2	157.5	7.4	188.0
;	.625	3.7	94.0	5.2	132.1	5.2	132.1	5.2	132.1	6.2	157.5	6.2	157.5	6.2	157.5	7.4	188.0	8.8	223.5
4	.688	4.4	111.8	5.2	132.1	6.2	157.5	6.2	157.5	7.4	188.0	7.4	188.0	7.4	188.0	8.8	223.5	10.5	266.7
7	.750	5.2	132.1	6.2	157.5	6.2	157.5	7.4	188.0	7.4	188.0	8.8	223.5	8.8	223.5	8.8	223.5	10.5	266.7
1	812	5.2	132.1	-7.4	188.0	7.4	188.0	7.4	188.0	8.8	223.5	8.8	223.5	8.8	223.5	10.5	266.7	15.0	381.0
34	875	6.2	157.5	7.4	188.0	7.4	188.0	8.8	223.5	8.8	223.5	10.5	266.7	10.5	266.7	10.5	266.7	15.1	383.5
5 7	826	62	157.5	80.00	223.5	8.8	223.5	. 8.8	223.5	10.5	266.7	10.5	266.7	10.5	266.7	12.6	320.0	15.1	383.5
5 7	0001	1.4	188.0	8	223.5	8.8	223.5	10.5	266.7	10.5	266.7	12.6	320.0	12:6	320.0	15.1	383.5	18.1	459.7
5 72	1 067	47	188.0	10.5	266.7	10.5	266.7	10.5	266.7	12.6	320.0	12.6	320.0	12.6	320.0	15.1	383.5	18.1	459.7
5 2	1125	74	188.0	10.5	266.7	10.5	266.7	12.6	320.0	12.6	320.0	15.1	383.5	15.1	383.5	18.1	459.7	21.7	551.2
5 7	1.188	8	223.5	10.5	266.7	12.6	320.0	12.6	320.0	15.1	383.5	15.1	383.5	15.1	383.5	18.1	459.7	21.7	551.2
37	1.250	8.8	223.5	12.6	320.0	12.6	320.0	15.1	383.5	15.1	383.5	18.1	459.7	18.1	459.7	18.1	459.7	26.0	660.4
92	250	1.4	35.6	6.1	48.3	6.1	48.3	1.9	48.3	2.2	55.9	2.2	55.9	2.2	55.9	2.6	66.0	3.1	78.7
2 2	781	1.6	40.6	2.2	55.9	2.2	55.9	2.2	55.9	2.6	66.0	2.6	66.0	2.6	66.0	3.1	78.7	3.7	94.0
8 %	312	6.1	48.3	2.2	55.9	2.2	55.9	2.6	66.0	2.6	66.0	3.1	78.7	3.1	78.7	3.1	78.7	3.7	94.0
36	344		1	2.6	66.0	2.6	66.0	2.6	66.0	3.1	78.7	3.1	78.7	3.1	78.7	3.7	94.0	4.4	111.8
36	375	2.2	55.9	2.6	66.0	3.1	78.7	3.1	78.7	3.1	78.7	3.7	94.0	3.7	94.0	3.7	94.0	4.4	111.8
36	406	1	I	3.1	78.7	3.1	78.7	3.7	94.0	3.7	94.0	3.7	94.0	3.7	94.0	4.4	111.8	5.2	132.1
36	.438	2.6	66.0	3.1	78.7	3.7	94.0	3.7	94.0	3.7	94.0	4.4	111.8	4.4	111.8	4.4	111.8	5.2	132.1
36	.469	۱	I	3.7	94.0	3.7	94.0	3.7	94.0	4.4	111.8	4.4	111.8	4.4	111.8	5.2	132.1	6.2	157.5
36	.500	3.1	78.7	3.7	94.0	3.7	94.0	4.4	111.8	4.4	111.8	5.2	132.1	5.2	132.1	5.2	132.1	6.2	157.5
36	.562	3.7	94.0	4.4	111.8	4,4	111.8	5.2	132.1	5.2	132.1	5.2	132.1	6.2	157.5	6.2	157.5	7.4	188.0
36	.625	3.7	94.0	5.2	132.1	5.2	132.1	5.2	132.1	6.2	157.5	6.2	157.5	6.2	157.5	7.4	188.0	8. 8.	223.5
36	.688	4.4	111.8	5.2	132.1	6.2	157.5	6.2	157.5	7.4	188.0	7.4	188.0	7.4	188.0	8.8	223.5	10.5	266.7
36	.750	4.4	111.8	6.2	157.5	6.2	157.5	7.4	188.0	7.4	188.0	8.8	223.5	8.8	223.5	8.8	223.5	10.5	266.7
36	.812	5.2	132.1	6.2	157.5	7.4	188.0	7.4	188.0	8.8	223.5	8.8	223.5	8.8	223.5	10.5	266.7	12.6	320.0
36	.875	6.2	157.5	7.4	188.0	7.4	188.0	8.8	223.5	8.8	223.5	10.5	266.7	10.5	266.7	10.5	266.7	12.6	320.0
36	938	6.2	157.5	8.8	223.5	8.8	223.5	8.8	223.5	10.5	266.7	10.5	266.7	10.5	266.7	12.6	320.0	15.1	383.5
36	1.000	6.2	157.5	8.8	223.5	8.8	223.5	10.5	266.7	10.5	266.7	12.6	320.0	12.6	320.0	12.6	320.0	15.1	383.5
36	1.062	7.4	188.0	8.8	223.5	10.5	266.7	10.5	266.7	12.6	320.0	12.6	320.0	12.6	320.0	15.1	383.5	18.1	459.7
36	1.125	7.4	188.0	10.5	266.7	10.5	266.7	12.6	320.0	12.6	320.0	15.1	383.5	15.1	383.5	15.1	383.5	21.7	551.2
36	1.188	8.8	223.5	10.5	266.7	12.6	320.0	12.6	320.0	15.1	383.5	15.1	383.5	15.1	383.5	18.1	459.7	21.7	551.2
36	1.250	8.8	223.5	12.6	320.0	12.6	320.0	15.1	383.5	15.1	383.5	15.1	383.5	18.1	459.7	18.1	459.7	26.0	660.4
36	317	01	48.3	2.2	55.9	2.2	55.9	2.6	66.0	2.6	66.0	3.1	78.7	3.1	78.7	3.1	78.7	3.7	94.0
9 2	41.) 41.0	2	10.2		640	36	66.0	36	66.0	15	78.7	3.1	78.7	3.1	78.7	3.7	94.0	4.4	111.8

_--

Copyright by the American Petroleum Institute Wed Apr 12 11:25:32 2000

- --- ------

SPECIFICATION FOR LINE PIPE

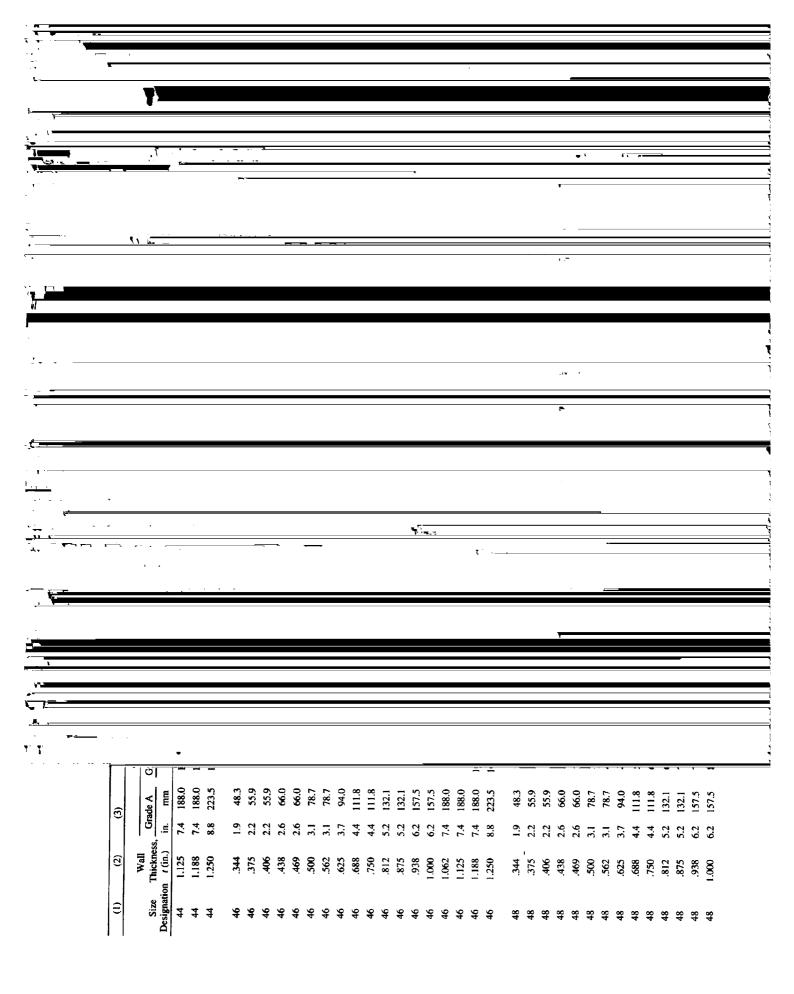
-- -- --

Grades B & X42 X4 in inm in in inm in in inm in 3.1 7.8.7 3.1 3.1 7.8.7 3.1 3.1 7.8.7 3.1 3.1 7.8.7 3.1 3.1 7.8.7 3.1 3.1 7.8.7 3.1 3.1 7.8.7 3.1 3.1 7.8.7 3.1 3.1 7.8.7 3.1 5.2 132.1 5.2 6.2 157.5 6.2 6.2 157.5 6.2 7.4 188.0 7.4 7.4 188.0 7.4 7.4 188.0 7.4 7.4 188.0 7.4 10.5 266.7 10.5 10.5 266.7 10.5 3.1 7.8.7 3.1 3.1 7.8.7 3.1 3.1 7.4 <th></th> <th>6</th> <th><u>e</u></th> <th></th> <th>(7</th> <th>(4)</th> <th></th> <th>(5)</th> <th></th> <th>(9)</th> <th></th> <th>6</th> <th>Ĭ</th> <th>8</th> <th></th> <th>(6)</th> <th></th> <th>(01)</th> <th></th> <th>(11)</th>		6	<u>e</u>		(7	(4)		(5)		(9)		6	Ĭ	8		(6)		(01)		(11)
Thickness, Grade A Crades B & X42 X44 r (in) in. mm in. mm in. 375 2.2 55.9 2.6 66.0 3.1 406 2.2 55.9 2.6 66.0 3.1 408 2.6 66.0 3.1 78.7 3.1 500 3.1 7.8.7 3.1 78.7 3.1 500 3.1 7.8.7 3.1 78.7 3.1 562 3.1 7.8.7 3.1 78.7 3.1 560 3.1 7.8.7 3.1 78.7 3.1 562 3.1 7.8.7 3.1 7.8.7 3.1 562 13.1 8.8 2.2 13.2 14 938 6.2 157.1 7.4 188.0 7.4 931 6.2 157.5 6.2 3.1 14 1.125 7.4 188.0 16.2 157.5 12.4	-	IleW								Di	Dimension A	•								
t(in) in. mm in. mm in. mm in. 375 2.2 559 3.1 78.7 3.1 406 2.2 559 3.1 78.7 3.1 408 2.6 660 3.1 78.7 3.1 500 3.1 78.7 3.1 78.7 3.1 500 3.1 78.7 3.1 78.7 3.1 500 3.1 78.7 3.1 78.7 3.1 500 3.1 78.7 3.1 78.7 3.1 500 3.1 78.7 4.4 111.8 5.2 132.1 6.2 5100 5.2 132.1 6.2 157.5 7.4 8.8 223.5 0.5 51125 5.2 132.1 6.2 157.5 7.4 11.5 51125 52.1 132.1 138.7 <	ЧL	ickness, -	Grad	1	Grades E	× م		<u>(</u> 46		X52	×	X56	×	X60		X65		X70		X80
375 2.2 55.9 2.6 66.0 3.1 78.7 3.7 406 2.2 55.9 3.1 78.7 3.7 94.0 3.7 500 3.1 78.7 3.7 94.0 3.7 3.7 94.0 3.7 500 3.1 78.7 3.7 94.0 3.7 3.7 94.0 3.7 502 3.1 78.7 3.7 94.0 3.7 94.0 3.7 503 3.1 78.7 3.7 94.0 3.7 94.0 3.7 504 4.4 111.8 5.2 132.1 6.2 157.5 7.4 512 52 132.1 6.2 157.5 7.4 188.0 7.4 512 5.2 132.1 6.2 157.5 7.4 188.0 7.4 512 7.4 111.8 5.2 105 105 105 105 11.125 7.4 188.0 10.5 266.7 105 31 11.125 7.4 188.0 10.5	uo	(in.)	.e	E E	.e	шш	ii.	шш	in.	шш	ij.	шш	in.	uu	. <u></u>	E	i.	mm	i,	Ē
406 2.2 55.9 3.1 78.7 3.7 438 2.6 66.0 3.1 78.7 3.7 500 3.1 78.7 3.7 94.0 3.7 502 3.1 78.7 3.7 94.0 3.7 562 3.1 78.7 3.7 94.0 3.7 562 3.1 78.7 3.7 94.0 3.7 562 3.1 78.7 3.7 94.0 3.7 5760 4.4 111.8 5.2 132.1 6.2 5750 5.2 132.1 6.2 157.5 6.2 5875 5.2 132.1 7.4 188.0 7.4 5875 5.2 132.1 6.2 157.5 7.4 581 1.000 6.2 157.1 7.4 188.0 7.4 593 6.2 157.1 18.8 223.5 10.5 56.7 10.5 1.125 7.4 188.0 10.5 266.7 10.5 31 1.125 7	•		2.2	55.9	2.6	66.0	3.1	78.7	3.1	78.7	3.1	78.7	3.7	94.0	3.7	94.0	3.7	94.0	4.4	111.8
438 2.6 66.0 3.1 78.7 3.7 94.0 3.7 500 3.1 78.7 3.7 94.0 3.7 94.0 3.7 502 3.1 78.7 3.7 94.0 3.7 94.0 3.7 502 3.1 78.7 3.7 94.0 3.7 94.0 3.7 503 3.7 94.0 5.2 132.1 6.2 137.5 6.2 503 3.7 94.0 5.2 132.1 6.2 157.5 6.2 515 5.2 132.1 6.2 157.1 7.4 188.0 7.4 52 132.1 6.2 157.1 7.4 188.0 7.4 938 6.2 157.1 7.4 188.0 7.4 1000 6.2 157.1 7.4 188.0 7.4 11.125 7.4 188.0 10.5 266.7 10.5 11.125 7.4 188.0 10.5 266.7 10.5 11.4 11.125 7.4 188.0			2.2	55.9	3.1	78.7	3.1	78.7	3.1	78.7	3.7	94.0	3.7	94.0	3.7	94.0	4.4	111.8	5.2	132.1
469 2.6 66.0 3.7 94.0 3.7 500 3.1 78.7 3.7 94.0 3.7 562 3.1 78.7 3.7 94.0 3.7 562 3.1 78.7 3.7 94.0 3.7 563 3.7 94.0 5.2 132.1 5.2 583 5.4 111.8 5.2 132.1 5.2 583 5.2 132.1 6.2 157.5 6.2 387 5.2 132.1 6.2 157.5 7.4 387 5.2 132.1 6.2 157.1 7.4 188.0 7.4 938 6.2 157.1 7.4 188.0 7.4 188.0 7.4 938 10.05 2.66.7 10.5 2.66.7 10.5 3.1 11.125 7.4 188.0 10.5 2.66.7 10.5 3.1 11.126 1.4 188.0 10.5 2.66.7 10.5 3.1 11.125 1.4 188.0 10.5 2.66.7	•		2.6	66.0	3.1	78.7	3.7	94.0	3.7	94.0	3.7	94.0	4.4	111.8	4.4	111.8	4.4	111.8	5.2	132.1
500 3.1 78.7 3.7 94.0 3.7 562 3.1 78.7 3.4 111.8 5.2 132.1 5.2 568 4.4 111.8 5.2 132.1 5.2 132.1 5.2 575 5.2 132.1 6.2 157.5 5.4 5.2 5.75 5.4 875 5.2 132.1 6.2 157.1 7.4 188.0 7.4 938 6.2 157.1 7.4 188.0 7.4 188.0 7.4 938 6.2 157.1 7.4 188.0 7.4 188.0 7.4 938 6.2 157.1 7.4 188.0 7.4 188.0 7.4 938 6.2 157.1 7.4 188.0 7.4 188.0 7.4 94.1 11.25 7.4 188.0 10.5 266.7 10.5 26 7.4 94.1 19 48.3 22.5 32.0 12.6 32.1 37 94.2 14.1 19 48.3	•		2.6	66.0	3.7	94.0	3.7	94.0	3.7	94.0	4.4	111.8	4.4	111.8	4 .4	111.8	5.2	132.1	6.2	157.5
562 3.1 78.7 4.4 11.18 5.2 132.1 5.2 625 3.7 94.0 5.2 132.1 5.2	•		3.1	78.7	3.7	94.0	3.7	94.0	4.4	111.8	4.4	111.8	5.2	132.1	5.2	132.1	5.2	132.1	6.2	157.5
625 3.7 94.0 5.2 132.1 5.2 688 4.4 111.8 5.2 132.1 6.2 5812 5.2 132.1 6.2 157.5 6.2 875 5.2 132.1 6.2 157.5 6.2 875 5.2 132.1 7.4 188.0 7.4 938 6.2 157.1 7.4 188.0 7.4 938 6.2 157.1 7.4 188.0 7.4 938 6.2 157.1 7.4 188.0 7.4 938 6.2 157.1 7.4 188.0 7.4 9100 6.2 157.1 8.8 223.5 10.5 266.7 10.5 1125 7.4 188.0 10.5 266.7 10.5 26 31 312 1.9 48.3 2.2 55.9 2.6 31 37 314 1.9 48.3 2.2 55.9 2.6 31 37 314 1.9 48.3 2.6 66.0 <td>•</td> <td></td> <td>3.1</td> <td>78.7</td> <td>4.4</td> <td>8.111</td> <td>4.4</td> <td>111.8</td> <td>5.2</td> <td>132.1</td> <td>5.2</td> <td>132.1</td> <td>5.2</td> <td>132.1</td> <td>6.2</td> <td>157.5</td> <td>6.2</td> <td>157.5</td> <td>7.4</td> <td>188.0</td>	•		3.1	78.7	4.4	8.111	4.4	111.8	5.2	132.1	5.2	132.1	5.2	132.1	6.2	157.5	6.2	157.5	7.4	188.0
688 4.4 11.8 5.2 132.1 6.2 .750 4.4 11.8 6.2 157.5 6.2 .812 5.2 132.1 7.4 188.0 7.4 .875 5.2 132.1 7.4 188.0 7.4 .875 5.2 137.1 7.4 188.0 7.4 .938 6.2 157.1 7.4 188.0 7.4 .938 6.2 157.1 7.4 188.0 8.8 223.5 10.5 266.7 10.5 1.125 7.4 188.0 10.5 266.7 10.5 266.7 10.5 266.7 10.5 266.7 10.5 266.7 10.5 266.7 10.5 266.7 10.5 266.7 10.5 266.7 10.5 266.7 10.5 266.7 10.5 266.7 10.5 266.7 10.5 27.4 27.4 27.4 27.4 27.4 27.4 27.6 27.4 27.6 27.4	•		3.7	94.0	5.2	132.1	5.2	132.1	5.2	132.1	6.2	157.5	6.2	157.5	6.2	157.5	7.4	188.0	8.8	223.5
.750 44 11.8 6.2 157.5 6.2 .875 5.2 132.1 6.2 157.5 7.4 .875 5.2 132.1 7.4 188.0 7.4 .938 6.2 157.1 7.4 188.0 7.4 .938 6.2 157.1 7.4 188.0 7.4 .1000 6.2 157.1 8.8 223.5 10.5 266.7 10.5 .1125 7.4 188.0 0.5 266.7 10.5 288 23.5 .1125 7.4 188.0 0.5 266.7 10.5 28 .118 8.8 223.5 10.5 266.7 10.5 28 .118 8.8 223.5 12.6 320.0 12.6 37 .118 8.8 223.5 12.6 320.0 12.6 37 .1250 8.8 225.9 3.1 78.7 3.1 .406 2.2 55.9 3.1 78.7 3.1 .405 2.6 66.0 3.	•		4.4	111.8	5.2	132.1	6.2	157.5	6.2	157.5	6.2	157.5	7.4	188.0	7.4	188.0	7.4	188.0	8.8	223.5
812 5.2 132.1 6.2 157.5 7.4 875 5.2 132.1 7.4 188.0 7.4 938 6.2 157.1 7.4 188.0 7.4 1000 6.2 157.1 8.8 223.5 10.5 1125 7.4 188.0 0.55 266.7 10.5 1.125 7.4 188.0 10.5 266.7 10.5 1.125 7.4 188.0 10.5 266.7 10.5 266.7 1.125 7.4 188.0 10.5 266.7 10.5 266.7 10.5 1.125 1.18 8.8 223.5 10.5 266.7 10.5 266.7 10.5 3.11 1.18 2.25 33.1 78.7 33.1 34.7 33.1 450 2.15 5.25 3.1 78.7 3.1 34.7 451 1.19 48.3 2.5 650.0 3.1 37.7 452 2.19 48.3 2.25 3.1 78.7 3.1	•			111.8	6.2	157.5	6.2	157.5	7.4	188.0	7.4	188.0	7.4	188.0	8.8	223.5	8.8	223.5	10.5	266.7
.875 5.2 132.1 7.4 188.0 7.4 .938 6.2 157.1 7.4 188.0 7.4 .1000 6.2 157.1 7.4 188.0 8.8 1.002 6.2 157.1 7.4 188.0 8.8 1.125 7.4 188.0 8.8 223.5 10.5 1.125 1.4 188.0 8.8 223.5 10.5 1.125 1.9 48.3 2.16 320.0 12.6 .312 1.9 48.3 2.2 55.9 2.1 10.5 .314 1.9 48.3 2.2 55.9 3.1 78.7 3.1 .344 1.9 48.3 2.6 66.0 3.1 78.7 3.1 .406 2.2 55.9 3.1 78.7 3.1 78.7 3.1 .403 2.6 66.0 3.1 78.7 3.7 94.0 3.7 .405 3.1 78.7 3.7 94.0 3.7 3.1 .503 3.1	•			132.1	6.2	157.5	7.4	188.0	7.4	188.0	8.8	223.5	8.8	223.5	8.8	223.5	10.5	266.7	12.6	320.0
.938 6.2 157.1 7.4 188.0 8.8 1000 6.2 157.1 8.8 223.5 10.5 11.125 7.4 188.0 8.8 223.5 10.5 11.126 7.4 188.0 8.8 223.5 10.5 266.7 10.5 11.126 1.4 188.0 8.8 223.5 10.5 266.7 10.5 11.126 8.8 223.5 10.5 266.7 10.5 3.8 312 1.9 48.3 2.6 32.0.0 12.6 312 1.9 48.3 2.6 66.0 3.1 314 1.9 48.3 2.6 66.0 3.1 314 1.9 48.3 2.6 66.0 3.1 317 318 2.5 55.9 2.6 50.0 3.7 318 2.6 66.0 3.1 7.8 3.7 3.7 318 2.6 66.0 3.1 7.8 3.7 3.7 318 2.6 66.0 3.1	•			132.1	7.4	188.0	7.4	188.0	8.8	223.5	8.8	223.5	10.5	266.7	10.5	266.7	10.5	266.7	12.6	320.0
1000 6.2 157.1 8.8 223.5 8.8 1.125 7.4 188.0 9.8 223.5 10.5 266.7 10.5 1.188 8.8 223.5 10.5 266.7 10.5 266.7 10.5 1.188 8.8 223.5 10.5 266.7 10.5 266.7 10.5 3.12 1.9 48.3 2.16 320.0 12.6 320.0 12.6 3.12 1.9 48.3 2.26 66.0 3.1 78.7 3.1 3.14 1.9 48.3 2.26 66.0 3.1 78.7 3.1 460 2.2 55.9 2.16 66.0 3.1 78.7 3.1 460 2.6 66.0 3.1 78.7 3.1 78.7 3.1 500 3.1 78.7 3.7 94.0 3.7 5.2 503 3.1 78.7 4.4 11.1.8 5.2 15.7 5.4 503 5.2 13.1 7.4 11.1.8 5.7 5.4	••			157.1	7.4	188.0	8.8	223.5	8.8	223.5	10.5	266.7	10.5	266.7	2.01	266.7	12.6	320.0	15.1	383.5
1062 7.4 188.0 8.8 223.5 10.5 266.7 10.5 1.125 7.4 188.0 10.5 266.7 10.5 266.7 10.5 1.188 8.8 223.5 10.5 266.7 10.5 266.7 10.5 3.12 1.9 48.3 2.26 320.0 12.6 3.12 1.9 48.3 2.2 55.9 2.2 55.9 2.2 3.14 1.9 48.3 2.6 66.0 3.1 78.7 3.1 406 2.2 55.9 2.6 66.0 3.1 78.7 3.1 408 2.6 66.0 3.1 78.7 3.1 78.7 3.1 408 2.6 66.0 3.1 78.7 3.1 78.7 3.1 500 3.1 78.7 3.1 78.7 3.1 74.0 3.7 503 3.1 78.7 4.4 111.8 5.2 132.1 6.2 503 5.2 132.1 6.2 157.5 7.4	2			157.1	8.8	223.5	8.8	223.5	10.5	266.7	10.5	266.7	10.5	266.7	12.6	320.0	12.6	320.0	15.1	383.5
1.125 7.4 188.0 10.5 266.7 10.5 1.188 8.8 223.5 10.5 266.7 10.5 1.188 8.8 223.5 10.5 266.7 10.5 1.250 8.8 223.5 10.5 266.7 10.5 3.12 1.9 48.3 2.2 55.9 2.2 3.14 1.9 48.3 2.6 66.0 3.1 3.75 2.2 55.9 3.1 78.7 3.1 3.76 66.0 3.1 78.7 3.1 3.7 3.76 66.0 3.1 78.7 3.1 78.7 3.1 3.76 66.0 3.1 78.7 3.1 78.7 3.1 3.78 2.6 66.0 3.1 78.7 3.1 74.0 3.7 5.65 3.1 78.7 3.7 94.0 3.7 5.2 5.65 3.1 78.7 3.1 74.8 3.7 5.65 3.1 7.4 111.8 5.2 15.7	2			188.0	8.8	223.5	10.5	266.7	10.5	266.7	12.6	320.0	12.6	320.0	12.6	320.0	15.1	383.5	18.1	459.7
1.188 8.8 223.5 10.5 266.7 10.5 1250 8.8 223.5 12.6 320.0 12.6 .312 1.9 48.3 2.2 55.9 2.2 .344 1.9 48.3 2.2 55.9 2.2 .344 1.9 48.3 2.2 55.9 2.6 .375 2.2 55.9 3.1 78.7 3.1 .406 2.2 55.9 3.1 78.7 3.1 .469 2.6 66.0 3.1 78.7 3.1 .469 2.6 66.0 3.1 78.7 3.1 .469 2.6 66.0 3.1 78.7 3.1 .469 2.6 66.0 3.1 78.7 3.7 .562 3.1 78.7 3.7 94.0 3.7 .563 3.1 78.7 3.1 18.7 5.2 .563 3.1 78.7 3.7 94.0 3.7 .562 3.1 7.4 111.8 5.2 132.	-			188.0	10.5	266.7	10.5	266.7	12.6	320.0	12.6	320.0	12.6	320.0	15.1	383.5	15.1	383.5	18.1	459.7
1.250 8.8 223.5 12.6 320.0 12.6 .312 1.9 48.3 2.6 66.0 2.6 .344 1.9 48.3 2.6 66.0 3.1 .375 2.2 55.9 2.6 66.0 3.1 .406 2.2 55.9 3.1 78.7 3.1 .469 2.6 66.0 3.1 78.7 3.1 .469 2.6 66.0 3.1 78.7 3.1 .469 2.6 66.0 3.1 78.7 3.1 .469 2.6 66.0 3.1 78.7 3.1 .500 3.1 78.7 3.7 94.0 3.7 .562 3.1 78.7 3.7 94.0 3.7 .562 3.1 78.7 3.7 94.0 3.7 .563 3.1 78.7 3.1 8.8 7.4 .563 3.1 7.8 7.4 111.8 6.2 157.5 7.4 .575 5.1 7.4 188.0 <td>-</td> <td></td> <td></td> <td>223.5</td> <td>10.5</td> <td>266.7</td> <td>10.5</td> <td>266.7</td> <td>12.6</td> <td>320.0</td> <td>12.6</td> <td>320.0</td> <td>15.1</td> <td>383.5</td> <td>15.1</td> <td>383.5</td> <td>18.1</td> <td>459.7</td> <td>21.7</td> <td>551.2</td>	-			223.5	10.5	266.7	10.5	266.7	12.6	320.0	12.6	320.0	15.1	383.5	15.1	383.5	18.1	459.7	21.7	551.2
.312 1.9 48.3 2.2 55.9 2.2 .344 1.9 48.3 2.6 66.0 2.6 .375 2.2 55.9 2.6 66.0 3.1 .406 2.2 55.9 2.6 66.0 3.1 .408 2.6 66.0 3.1 78.7 3.1 .469 2.6 66.0 3.1 78.7 3.1 .469 2.6 66.0 3.7 94.0 3.7 .500 3.1 78.7 3.7 94.0 3.7 .500 3.1 78.7 3.7 94.0 3.7 .500 3.1 78.7 3.7 94.0 3.7 .501 3.7 94.0 5.2 132.1 5.2 .562 3.1 74.4 11.8 5.2 132.1 5.2 .563 4.4 11.1.8 5.2 132.1 6.2 157.5 7.4 .812 5.2 132.1 6.2 157.5 7.4 180.0 7.4 .812				223.5	12.6	320.0	12.6	320.0	12.6	320.0	15.1	383.5	15.1	383.5	15.1	383.5	18.1	459.7	21.7	551.2
344 1.9 48.3 2.6 66.0 2.6 375 2.2 55.9 2.6 66.0 3.1 406 2.2 55.9 3.1 78.7 3.1 438 2.6 66.0 3.1 78.7 3.1 469 2.6 66.0 3.1 78.7 3.1 500 3.1 78.7 3.7 94.0 3.7 562 3.1 78.7 3.7 94.0 3.7 562 3.1 78.7 3.7 94.0 3.7 563 3.1 78.7 3.7 94.0 3.7 563 3.1 78.7 3.7 94.0 3.7 562 3.1 78.7 3.7 94.0 3.7 563 4.4 111.8 5.2 132.1 6.2 575 7.4 188.0 7.4 188.0 7.4 582 522 132.1 6.2 157.5 7.4 593 6.2 157.5 7.4 188.0 7.4	•••		6.1	48.3	2.2	55.9	2.2	55.9	2.6	66.0	2.6	66.0	3.1	78.7	3.1	78.7	3.1	78.7	3.7	94.0
.375 2.2 55.9 2.6 66.0 3.1 .406 2.2 55.9 3.1 78.7 3.1 .469 2.6 66.0 3.1 78.7 3.1 .469 2.6 66.0 3.1 78.7 3.7 .500 3.1 78.7 3.7 94.0 3.7 .500 3.1 78.7 3.7 94.0 3.7 .500 3.1 78.7 3.7 94.0 3.7 .501 3.1 78.7 3.7 94.0 3.7 .502 3.1 78.7 4.4 111.8 4.4 .502 .812 5.2 132.1 6.2 5.7 .750 4.4 111.8 6.2 157.5 6.2 .812 5.2 132.1 6.2 157.5 6.2 .812 5.2 132.1 6.2 157.5 6.2 .938 6.2 157.5 7.4 188.0 7.4 .937 .94.0 157.5 7.4 188.0 <td< td=""><td>•</td><td></td><td>6.1</td><td>48.3</td><td>2.6</td><td>66.0</td><td>2.6</td><td>66.0</td><td>2.6</td><td>66.0</td><td>3.1</td><td>78.7</td><td>3.1</td><td>78.7</td><td>3.1</td><td>78.7</td><td>3.7</td><td>94.0</td><td>4,4</td><td>111.8</td></td<>	•		6.1	48.3	2.6	66.0	2.6	66.0	2.6	66.0	3.1	78.7	3.1	78.7	3.1	78.7	3.7	94.0	4,4	111.8
.406 2.2 55.9 3.1 78.7 3.1 .438 2.6 66.0 3.1 78.7 3.7 .469 2.6 66.0 3.1 78.7 3.7 .500 3.1 78.7 3.7 94.0 3.7 .562 3.1 78.7 3.7 94.0 3.7 .562 3.1 78.7 3.7 94.0 3.7 .562 3.1 78.7 4.4 111.8 5.2 132.1 5.2 .628 4.4 111.8 5.2 132.1 5.2 5.2 132.1 5.2 .750 4.4 111.8 5.2 132.1 6.2 7.4 .812 5.2 132.1 6.2 157.5 7.4 188.0 7.4 .938 6.2 157.5 7.4 188.0 7.4 188.0 7.4 .1000 6.2 157.5 8.8 223.5 10.5 10.5 .1125 7.4 188.0 10.5 766.7 10.5 10.5	. 1		2.2	55.9	2.6	66.0	3.1	78.7	3.1	78.7	3.1	78.7	3.7	94.0	3.7	<u>94.</u> 0	3.7	94.0	4.4	111.8
.438 2.6 66.0 3.1 78.7 3.7 .469 2.6 66.0 3.7 94.0 3.7 .500 3.1 78.7 3.7 94.0 3.7 .562 3.1 78.7 3.7 94.0 3.7 .562 3.1 78.7 4.4 11.8 4.4 .562 3.7 94.0 5.2 132.1 5.2 .688 4.4 11.8 5.2 132.1 5.2 .688 4.4 11.8 5.2 132.1 6.2 .750 4.4 11.8 5.2 132.1 6.2 .755 5.4 111.8 5.2 157.5 6.2 .812 5.2 132.1 6.2 157.5 7.4 .875 5.2 132.1 7.4 188.0 7.4 .938 6.2 157.5 7.4 188.0 7.4 .938 6.2 157.5 8.8 223.5 10.5 .1000 6.2 157.5 8.8 223.5	•		2.2	55.9	3.1	78.7	3.1	78.7	3.1	78.7	3.7	94.0	3.7	94.0	3.7	94.0	4.4	111.8	5.2	132.1
.469 2.6 66.0 3.7 94.0 3.7 .500 3.1 78.7 3.7 94.0 3.7 .562 3.1 78.7 3.7 94.0 3.7 .562 3.1 78.7 4.4 111.8 4.4 .625 3.7 94.0 5.2 132.1 5.2 .638 4.4 111.8 5.2 132.1 5.2 .658 4.4 111.8 5.2 132.1 6.2 .750 4.4 111.8 5.2 132.1 6.2 .812 5.2 132.1 6.2 157.5 7.4 .875 5.2 132.1 7.4 188.0 7.4 .938 6.2 157.5 7.4 188.0 7.4 .938 6.2 157.5 8.8 223.5 10.5 .1000 6.2 157.5 8.8 223.5 10.5 .1125 7.4 188.0 10.5 766.7 10.5 .1125 7.4 188.0 10.5 766.	•		2.6	66.0	3.1	78.7	3.7	94.0	3.7	94.0	3.7	94.0	4.4	8.111	4.4	111.8	4.4	111.8	5.2	132.1
.500 3.1 78.7 3.7 94.0 3.7 .562 3.1 78.7 4.4 111.8 4.4 .625 3.7 94.0 5.2 132.1 5.2 .688 4.4 111.8 5.2 132.1 6.2 .750 4.4 111.8 5.2 132.1 6.2 .750 4.4 111.8 5.2 157.5 6.2 .812 5.2 132.1 6.2 157.5 7.4 .875 5.2 132.1 7.4 188.0 7.4 .938 6.2 157.5 7.4 188.0 7.4 .938 6.2 157.5 7.4 188.0 7.4 .938 6.2 157.5 8.8 223.5 10.5 .1000 6.2 157.5 8.8 223.5 10.5 .1125 7.4 188.0 10.5 266.7 10.5 .118 8.8 223.5 10.5 765.7 10.5	•		2.6	66.0	3.7	94.0	3.7	94.0	3.7	94.0	4.4	111.8	4.4	8.111	4.4	111.8	5.2	132.1	6.2	157.5
.562 3.1 78.7 4.4 111.8 4.4 .625 3.7 94.0 5.2 132.1 5.2 .688 4.4 111.8 5.2 132.1 5.2 .750 4.4 111.8 5.2 132.1 6.2 .750 4.4 111.8 6.2 157.5 6.2 .812 5.2 132.1 6.2 157.5 7.4 .875 5.2 132.1 7.4 188.0 7.4 .938 6.2 157.5 7.4 188.0 7.4 .938 6.2 157.5 7.4 188.0 7.4 .938 6.2 157.5 7.4 188.0 7.4 .938 6.2 157.5 7.4 188.0 7.4 .938 6.2 157.5 7.4 188.0 7.4 .938 6.2 157.5 7.4 188.0 7.4 .938 6.2 157.5 7.4 188.0 7.4 .938 6.2 157.5 8.8 223.5<	-:		3.1	78.7	3.7	94.0	3.7	94.0	4.4	111.8	4.4	111.8	5.2	132.1	5.2	132.1	5.2	132.1	6.2	157.5
.625 3.7 94.0 5.2 132.1 5.2 .688 4.4 11.8 5.2 132.1 6.2 .750 4.4 11.8 5.2 137.5 6.2 .812 5.2 132.1 6.2 157.5 6.2 .875 5.2 132.1 6.2 157.5 7.4 .875 5.2 132.1 7.4 188.0 7.4 .938 6.2 157.5 7.4 188.0 8.8 .938 6.2 157.5 7.4 188.0 8.8 .1000 6.2 157.5 7.4 188.0 8.8 .1002 7.4 188.0 10.5 266.7 10.5 .1125 7.4 188.0 10.5 266.7 10.5 .1188 8.8 273.5 10.5 765.7 10.5	-:		3.1	78.7	4.4	111.8	4.4	111.8	5.2	132.1	5.2	132.1	5.2	132.1	6.2	157.5	6.2	157.5	7.4	188.0
.688 4.4 11.8 5.2 132.1 6.2 .750 4.4 11.8 6.2 157.5 6.2 .812 5.2 132.1 6.2 157.5 7.4 .875 5.2 132.1 7.4 188.0 7.4 .938 6.2 157.5 7.4 188.0 7.4 1.000 6.2 157.5 7.4 188.0 8.8 1.000 6.2 157.5 8.8 223.5 10.5 1.125 7.4 188.0 10.5 266.7 10.5 1.188 8.8 223.5 10.5 766.7 10.5	-			94.0	5.2	132.1	5.2	132.1	5.2	132.1	6.2	157.5	6.2	157.5	6.2	157.5	7.4	188.0	8.8	223.5
.750 4.4 11.8 6.2 157.5 6.2 .812 5.2 132.1 6.2 157.5 7.4 .875 5.2 132.1 7.4 188.0 7.4 .938 6.2 157.5 7.4 188.0 7.4 1.000 6.2 157.5 7.4 188.0 8.8 1.000 6.2 157.5 8.8 223.5 10.5 1.125 7.4 188.0 10.5 266.7 10.5 1.188 8.8 223.5 10.5 766.7 10.5	-			111.8	5.2	132.1	6.2	157.5	6.2	157.5	6.2	157.5	7,4	188.0	7.4	188.0	7.4	188.0	8.8	223.5
.812 5.2 132.1 6.2 157.5 7.4 .875 5.2 132.1 7.4 188.0 7.4 .938 6.2 157.5 7.4 188.0 8.8 1.000 6.2 157.5 8.8 223.5 8.8 1.062 7.4 188.0 8.8 223.5 10.5 1.125 7.4 188.0 10.5 266.7 10.5 1.188 8.8 223.5 10.5 766.7 10.5	••			111.8	6.2	157.5	6.2	157.5	7.4	188.0	7.4	188.0	7.4	188.0	7.4	188.0	8.8	223.5	10.5	266.7
.875 5.2 132.1 7.4 188.0 7.4 .938 6.2 157.5 7.4 188.0 8.8 28 2 1.000 6.2 157.5 8.8 223.5 8.8 2 10.5 11.05 11.125 7.4 188.0 8.8 223.5 10.5	-,			132.1	6.2	157.5	7.4	188.0	7.4	188.0	8.8	223.5	8.8	223.5	8.8	223.5	10.5	266.7	12.6	320.0
.938 6.2 157.5 7.4 188.0 8.8 1.000 6.2 157.5 8.8 223.5 8.8 1.062 7.4 188.0 8.8 223.5 10.5 1.125 7.4 188.0 10.5 266.7 10.5 1.188 8.8 223.5 10.5 266.7 10.5				132.1	7.4	188.0	7.4	188.0	8.8	223.5	8.8	223.5	8.8	223.5	10.5	266.7	10.5	266.7	12.6	320.0
1.000 6.2 157.5 8.8 223.5 8.8 1.062 7.4 188.0 8.8 223.5 10.5 1.125 7.4 188.0 10.5 266.7 10.5 1.188 8.8 223.5 10.5 266.7 10.5	•;			157.5	7.4	188.0	8.8	223.5	8.8	223.5	10.5	266.7	10.5	266.7	10.5	266.7	12.6	320.0	15.1	383.5
1.062 7.4 188.0 8.8 223.5 10.5 1.125 7.4 188.0 10.5 266.7 10.5 1.188 8.8 223.5 10.5 266.7 10.5				157.5	8.8	223.5	8.8	223.5	10.5	266.7	10.5	266.7	10.5	266.7	12.6	320.0	12.6	320.0	15.1	383.5
1.125 7.4 188.0 10.5 266.7 10.5 1.188 8.8 223.5 10.5 766.7 10.5	Ĩ			188.0	8.8	223.5	10.5	266.7	10.5	266.7	10.5	266.7	12.6	320.0	12.6	320.0	15.1	383.5	18.1	459.7
1.188 8.8 223.5 10.5 266.7 10.5	-			188.0	10.5	266.7	10.5	266.7	10.5	266.7	12.6	320.0	12.6	320.0	12.6	320.0	15.1	383.5	18.1	459.7
	3	~		223.5	10.5	266.7	10.5	266.7	12.6	320.0	12.6	320.0	15.1	383.5	15.1	383.5	15.1	383.5	21.7	551.2

API SPECIFICATION 5L

106

Continued
g Dimensions
Bend Test Jig
Guided B
Table G-1


	ę		Ę				151		(6)		6		(8)		(6)	(01)	6		(11)
E	(7)		(6)		(+)		(2)			Dimension A		1							
	Wall	1	Grade A	Grades	Grades B & X42		X46	$\left[\right]$	X52	×	X56	`	X60	X	X65	X	X70	×	X80
Size Inickne Designation 1 (in.)	1 hickness, 1 1 (in.)	1	ШШ	.E	uu	. .	ШШ	.E	mm	Ë	mm	'n.	шш	in.	шШ	ij.	mm	'n.	um
40 40	1.250	8.8	2	10.5	266.7	12.6	320.0	12.6	320.0	15.1	383.5	15.1	383.5	15.1	383.5	18.1	459.7	21.7	551.2
42	.344	1.9	48.3	2.6	66.0	2.6	66.0	2.6	66.0	3.1	78.7	3.1	78.7	3.1	78.7	3.7	94.0	4.4	111.8
- 1	375	2.2		2.6	66.0	3.1	78.7	3.1	78.7	3.1	78.7	3.7	94.0	3.7	94.0	3.7	94.0	4.4	111.8
42	406	2.2		3.1	78.7	3.1	78.7	3.1	78.7	3.7	94.0	3.7	94.0	3.7	94.0	4.4	111.8	5.2	132.1
42	.438	2.6		3.1	78.7	3.1	78.7	3.7	94.0	3.7	94.0	4.4	111.8	4.4	111.8	4.4	111.8	5.2	132.1
54	469	2.6		3.7	94.0	3.7	94.0	3.7	94.0	4.4	111.8	4.4	111.8	4.4	111.8	5.2	132.1	6.2	157.5
- 54	200	3.1		3.7	94.0	3.7	94.0	4.4	111.8	4.4	111.8	5.2	132.1	5.2	132.1	5.2	132.1	6.2	157.5
5 4	.562	3.1		4.4	111.8	4.4	111.8	5.2	132.1	5.2	132.1	5.2	132.1	5.2	132.1	6.2	<u>157.5</u>	7.4	188.0
42	.625	3.7	94.0	5.2	132.1	5.2	132.1	5.2	132.1	6.2	157.5	6.2	157.5	6.2	157.5	7.4	188.0	8.8	223.5
- 4	.688	4.4	_	5.2	132.1	5.2	132.1	6.2	157.5	6.2	157.5	7.4	188.0	7.4	188.0	7.4	188.0	8.8	223.5
5 7	.750	4.4		6.2	157.5	6.2	157.5	6.2	157.5	7.4	188.0	7.4	188.0	7.4	188.0	8.8	223.5	10.5	266.7
42	.812	5.2		6.2	157.5	7.4	188.0	7.4	188.0	7.4	188.0	8.8	223.5	8.8	223.5	10.5	266.7	10.5	266.7
- 4	.875	5.2		7.4	188.0	7.4	188.0	8.8	223.5	8.8	223.5	8.8	223.5	10.5	266.7	10.5	266.7	12.6	320.0
42	938	6.2		7.4	188.0	8.8	223.5	8.8	223.5	10.5	266.7	10.5	266.7	10.5	266.7	12.6	320.0	15.1	383.5
42	000	6.2		8.8	223.5	8.8	223.5	10.5	266.7	10.5	266.7	10.5	266.7	10.5	266.7	12.6	320.0	15.1	383.5
42	1.062	7.4		8.8	223.5	8.8	223.5	10.5	266.7	10.5	266.7	12.6	320.0	12.6	320.0	12.6	320.0	18.1	459.7
42	1.125	7.4		10.5	266.7	10.5	266.7	10.5	266.7	12.6	320.0	12.6	320.0	12.6	320.0	15.1	383.5	18.1	459.7
42	1.188	7.4		10.5	266.7	10.5	266.7	12.6	320.0	12.6	320.0	15.1	383.5	15.1	383.5	15.1	383.5	18.1	459.7
42	1.250	8.8		10.5	266.7	12.6	320.0	12.6	320.0	15.1	383.5	15.1	383.5	15.1	383.5	18.1	459.7	21.7	551.2
				I	1			Č				-	L 0L		787	17	07.0	44	8.111
4	1	6.1		2.6	66.0	2.6	0.00	2.6	0.00		1.01		1.01	1.0	040		070	44	8.111
4	375	2.2		2.6	00.0	5.1	1.81	. .	1.01		1.01	- r - r					8111	<	1 22 1
44	<u>8</u>	2.2		3.1	78.7	3.1	78.7	3.1	1.8/	3.1							0 1 1		1221
4	.438	2.6		3.1	78.7	3.1	78.7		94.0	3.7	0.44	4 4	8.111	4 4 4	0.111 8 111	4 7 7	132.1	7.5	157.5
4	404	2.0		3.1			0.44			t .	0.111	t c i v			1321	5 2	1321	6.2	157.5
4 :	005.		1.8/	5./	9.4.0	1.0	0.4% 8 1 1 1	t ¢ t ¢	132.1	t (*	132.1	5.2	132.1	5.2	132.1	6.2	157.5	7.4	188.0
‡ 3	300			i v	1321	5	1.32.1	5.2	132.1	6.2	157.5	6.2	157.5	6.2	157.5	7.4	188.0	8.8	223.5
4 7	(70. 993		-	1 C S	1321	4.5	1321	6.2	157.5	6.2	157.5	7.4	188.0	7.4	188.0	7.4	188.0	8.8	223.5
; 3	000-	44		63	157.5	62	157.5	6.2	157.5	7.4	188.0	7.4	188.0	7.4	188.0	8.8	223.5	10.5	266.7
: 1	518	5.2		6.2	157.5	7.4	188.0	7.4	188.0	7.4	188.0	8.8	223.5	8.8	223.5	8.8	223.5	10.5	266.7
. 1	878	5.2		7.4	188.0	7.4	188.0	7.4	188.0	8.8	223.5	8.8	223.5	8.8	223.5	10.5	266.7	12.6	320.0
: 1	.938	6.2		7.4	188.0	8.8	223.5	8.8	223.5	8.8	223.5	10.5	266.7	10.5	266.7	10.5	266.7	12.6	320.0
4	1.000	6.2		8.8	223.5	8.8	223.5	8.8	223.5	10.5	266.7	10.5	266.7	10.5	266.7	12.6	320.0	15.1	408.9
4	1.062	, L		8.8	223.5	8.8	223.5	10.5	266.7	10.5	266.7	12.6	320.0	12.6	320.0	12.6	320.0	15.1	383.5

SPECIFICATION FOR LINE PIPE

107

- --

Ξ	(2)	0		(4)	(1		(5)		(9)	Ŭ	3	3	(8)	Ŭ	(6)	U	(10)		(11)
									Din	Dimension A	_								
Cita	Wall - Thickneec	Grade A	de A	Grades B	3 & X42	×	X46	×	X52	x	X56		X60	×	X65	x	X70	×	X80
Designation	r (in.)	.E	mm		шш	Ē	шш	in.	mm	in.	mm	in.	mm	'n,	шш	.i	mm	.i	uu
48	1.062	6.2	157.5	8.8	223.5	8.8	223.5	10.5	266.7	10.5	266.7	12.6	320.0	12.6	320.0	12.6	320.0	15.1	383.5
48	1.125	7.4	188.0	8.8	223.5	10.5	266.7	10.5	266.7	12.6	320.0	12.6	320.0	12.6	320.0	15.1	383.5	18.1	459.7
48	1.188	7.4	188.0	10.5	266.7	10.5	266.7	12.6	320.0	12.6	320.0	12.6	320.0	12.6	320.0	15.1	383.5	18.1	459.7
48	1.250	8.8	223.5	10.5	266.7	10.5	266.7	12.6	320.0	12.6	320.0	15.1	383.5	15.1	383.5	15.1	383.5	21.7	551.2
\$	375	2.2	\$5.9	2.6	66.0	2.6	66.0	3.1	78.7	3.1	78.7	3.7	94.0	3.7	94.0	3.7	94.0	4.4	111.8
: :	406	22	55.9	3.1	78.7	3.	78.7	3.1	78.7	3.7	94.0	3.7	94.0	3.7	94.0	4.4	111.8	5.2	132.1
52	.438	2.6	66.0	3.1	78.7	3.1	78.7	3.7	94.0	3.7	94.0	4.4	111.8	4.4	111.8	4.4	111.8	5.2	132.1
52	469	2.6	66.0	3.7	94.0	3.7	94.0	3.7	94.0	4.4	111.8	4.4	111.8	4.4	111.8	5.2	. 132.1	6.2	157.5
52	500	3.1	78.7	3.7	94.0	3.7	94.0	4.4	111.8	4.4	111.8	4.4	111.8	5.2	132.1	5.2	132.1	6.2	157.5
52	.562	3.1	78.7	4.4	111.8	4.4	111.8	4.4	111.8	5.2	132.1	5.2	132.1	5.2	132.1	6.2	157.5	7.4	188.0
52	.625	3.7	94.0	4.4	111.8	5.2	132.1	5.2	132.1	6.2	157.5	6.2	157.5	6.2	157.5	6.2	157.5	7.4	188.0
52	.688	4.4	111.8	5.2	132.1	5.2	132.1	6.2	157.5	6.2	157.5	6.2	157.5	7.4	188.0	7.4	188.0	8.8	223.5
52	.750	4.4	111.8	6.2	157.5	6.2	157.5	6.2	157.5	7.4	188.0	7.4	188.0	7.4	188.0	8.8	223.5	10.5	266.7
52	.812	5.2	132.1	6.2	157.5	6.2	157.5	7.4	188.0	7.4	188.0	8.8	223.5	8.8 8.8	223.5	8.8	223.5	10.5	266.7
52	.875	5.2	132.1	7.4	188.0	7.4	188.0	7.4	188.0	8.8	223.5	8.8	223.5	8.8	223.5	10.5	266.7	12.6	320.0
52	938	6.2	157.5	7.4	188.0	7.4	188.0	8.8	223.5	8.8	223.5	10.5	266.7	10.5	266.7	10.5	266.7	12.6	320.0
52	1.000	6.2	157.5	7.4	188.0	8.8	223.5	8.8	223.5	10.5	266.7	10.5	266.7	10.5	266.7	12.6	320.0	15.1	383.5
52	1.062	6.2	157.5	8.8	223.5	8.8	223.5	10.5	266.7	10.5	266.7	10.5	366.7	12.6	320.0	12.6	320.0	15.1	383.5
52	1.125	7.4	188.0	8.8	223.5	10.5	266.7	10.5	266.7	10.5	226.7	12.6	320.0	12.6	320.0	12.6	320.0	18.1	459.7
52	1.188	7.4	188.0	10.5	266.7	10.5	266.7	10.5	266.7	12.6	320.0	12.6	320.0	12.6	320.0	15.1	383.5	18.1	459.7
52	1.250	8.8	223.6	10.5	266.7	10.5	266.7	12.6	320.0	12.6	320.0	15.1	383.5	15.1	383.5	15.1	383.5	18.1	459.7
95	375	2.2	55.9	2.6	66.0	2.6	66.0	3.1	78.7	3.1	78.7	3.7	94.0	3.7	94.0	3.7	94.0	4.4	111.8
8	406	2.2	55.9	3.1	78.7	3.1	78.7	3.1	78.7	3.7	94.0	3.7	94.0	3.7	94.0	4.4	111.8	5.2	132.1
26	.438	2.6	66.0	3.1	78.7	3.1	78.7	3.7	94.0	3.7	94.0	3.7	94.0	4.4	111.8	4.4	111.8	5.2	132.1
56	.469	2.6	66.0	3.7	94.0	3.7	94.0	3.7	94.0	4.4	111.8	4.4	111.8	4.4	111.8	5.2	132.1	6.2	157.5
56	500	3.1	78.7	3.7	94.0	3.7	94.0	4.4	111.8	4.4	8.111	4.4	111.8	4 .4	111.8	5.2	132.1	6.2	157.5
56	.562	3.1	78.7	4.4	111.8	4.4	111.8	4.4	111.8	5.2	132.1	5.2	132.1	5.2	132.1	6.2	157.5	7.4	188.0
3	.625	3.7	94.0	4.4	111.8	5.2	132.1	5.2	132.1	5.2	132.1	6.2	157.5	6.2	157.5	6.2	157.5	7.4	188.0
35	688	4.4	111.8	5.2	132.1	5.2	132.1	6.2	157.5	6.2	157.5	6.2	157.5	7.4	188.0	7.4	188.0	8.8	223.5
3 6	.750	4.4	111.8	6.2	157.5	6.2	157.5	6.2	157.5	7.4	188.0	7.4	188.0	7.4	188.0	8.8	223.5	10.5	266.7
56	.812	5.2	132.1	6.2	157.5	6.2	157.5	7.4	188.0	7.4	188.0	7.4	188.0	8.8	223.5	8.8	223.5	10.5	266.7
56	.875	5.2	132.1	7.4	188.0	7.4	188.0	7.4	188.0	8.8	223.5	8.8	223.5	8.8	223.5	10.5	266.7	12.6	320.0
56	.938	6.2	157.5	7.4	188.0	7.4	188.0	8.8	223.5	8.8	223.5	8.8	223.5	10.5	266.7	10.5	266.7	12.6	320.0
56	1.000	6.2	157.5	7.4	188.0	8.8	223.5	8.8	223.5	10.5	266.7	10.5	266.7	10.5	266.7	12.6	320.0	15.1	383.5

Copyright by the American Petroleum Institute Wed Apr 12 11:25:38 2000

.

SPECIFICATION FOR LINE PIPE

Ξ	(2)		(3)		(4)		(5)	-	(9)		9		(8)		(6))	(10)		(11)
	Well								Dii	Dimension A	¥								
Size	Thickness.		Grade A	Grades B &	B & X42		X46	ŕ	X52	ŕ	X56		X60		X65		X70		X80
Designation 1 (in.)	r (in.)	Ë.	uu	.ü	mm	i.	uu	in.	шш	ii.	шш	in.	ШШ	in.	mm	.E	mm	.E	E E
56	1.062	6.2	157.5	8.8	223.5	8.8	223.5	10.5	266.7	10.5	266.7	10.5	266.7	10.5	266.7	12.6	320.0	15.1	383.5
56	1.125	7.4	188.0	8.8	223.5	8.8	223.5	10.5	266.7	10.5	266.7	12.6	320.0	12.6	320.0	12.6	320.0	15.1	383.5
56	1.188	7.4	188.0	10.5	266.7	10.5	266.7	10.5	266.7	12.6	320.0	12.6	320.0	12.6	320.0	15.1	383.5	18.1	459.7
56	1.250	7.4	188.0	10.5	266.7	10.5	266.7	12.6	320.0	12.6	320.0	12.6	320.0	15.1	383.5	15.1	383.5	18.1	459.7
60	375	22	55.9	2.6	66.0	2.6	66.0	3.1	78.7	3.1	78.7	3.1	78.7	3.7	94.0	3.7	94.0	4.4	111.8
99	.406	2.2	55.9	3.1	78.7	3.1	78.7	3.1	78.7	3.7	94.0	3.7	94.0	3.7	94.0	4.	111.8	5.2	132.1
8	.438	2.6	66.0	3.1	78.7	3.1	78.7	3.7	94.0	3.7	94.0	3.7	94.0	4.4	111.8	4.4	111.8	5.2	132.1
8	.469	2.6	66.0	3.1	78.7	3.7	94.0	3.7	94.0	4.4	111.8	4.4	111.8	4.4	111.8	5.2	132.1	5.2	132.1
8	.500	3.1		3.7	94.0	3.7	94.0	4.4	111.8	4.4	111.8	4.4	111.8	4.4	111.8	5.2	132.1	6.2	157.5
8	.562	3.1		4.4	111.8	4.4	111.8	4.4	111.8	5.2	132.1	5.2	132.1	5.2	132.1	6.2	157.5	7.4	188.0
8	.625	3.7		4.4	111.8	5.2	132.1	5.2	132.1	5.2	132.1	6.2	157.5	6.2	157.5	6.2	157.5	7.4	188.0
8	.688	3.7		5.2	132.1	5.2	132.1	6.2	157.5	6.2	157.5	6.2	157.5	6.2	157.5	7.4	188.0	8.8	223.5
60	.750	4.4		5.2	132.1	6.2	157.5	6.2	157.5	7.4	188.0	7.4	188.0	7.4	188.0	8.8	223.5	8.8	223.5
99	.812	5.2	132.1	6.2	157.5	6.2	157.5	7.4	188.0	7.4	188.0	7.4	188.0	8.8	223.5	8.8	223.5	10.5	266.7
8	.875	5.2	132.1	6.2	157.5	7.4	188.0	7.4	188.0	8.8	223.5	8.8	223.5	8.8	223.5	10.5	266.7	10.5	266.7
60	938	5.2		7.4	188.0	7.4	188.0	8.8	223.5	8.8	223.5	8.8	223.5	10.5	266.7	10.5	266.7	12.6	320.0
99	1.000	6.2	•	7.4	188.0	80 80	223.5	8.8	222 5	8.8	223.5	10.5	266.7	10.5	266.7	10.5	266.7	12.6	320.0
8	1.062	6.2		8.8	223.5	8.8	223.5	8.8	225.5	10.5	266.7	10.5	266.7	10.5	266.7	12.6	320.0	15.1	383.5
90	1.125	7.4		8.8	223.5	8.8	223.5	10.5	266.7	10.5	266.7	12.6	320.0	12.6	320.0	12.6	320.0	15.1	383.5
8	1.188	7.4		10.5	266.7	10.5	266.7	10.5	266.7	12.6	320.0	12.6	320.0	12.6	320.0	15.1	383.5	18.1	459.7
3	1.250	7.4	188.0	10.5	266.7	10.5	266.7	12.6	320.0	12.6	320.0	12.6	320.0	12.6	320.0	15.1	383.5	18.1	459.7
2	375	2.2		2.6	66.0	2.6	66.0	3.1	78.7	3.1	78.7	3.1	78.7	3.7	94.0	3.7	94.0	4.4	111.8
2	.406	2.2		3.1	78.7	3.1	78.7	3.1	78.7	3.7	94.0	3.7	94.0	3.7	94.0	4 . 4	111.8	5.2	132.1
4	.438	2.6	66.0	3.1	78.7	3.1	78.7	3.7	94.0	3.7	94.0	3.7	94.0	4.4	111.8	4.4	111.8	5.2	132.1
2	.469	2.6		3.1	78.7	3.7	94.0	3.7	94.0	4.4	111.8	4.4	111.8	4.4	111.8	5.2	132.1	5.2	132.1
2	.500	3.1		3.7	94.0	3.7	94.0	4.4	111.8	4.4	111.8	4.4	111.8	4.4	111.8	5.2	132.1	6.2	157.5
64	.562	3.1		4.4	111.8	4.4	111.8	4.4	111.8	5.2	132.1	5.2	132.1	5.2	132.1	6.2	157.5	7.4	188.0
2	.625	3.7		4,4	111.8	5.2	132.1	5.2	132.1	5.2	132.1	6.2	157.5	6.2	157.5	6.2	157.5	7.4	188.0
2	.688	3.7		5.2	132.1	5.2	132.1	6.2	157.5	6.2	157.5	6.2	157.5	6.2	157.5	7.4	188.0	8.8	223.5
2	.750	4.4		5.2	132.1	6.2	157.5	6.2	157.5	7.4	188.0	7.4	188.0	7.4	188.0	7.4	188.0	8. 8	223.5
2	.812	5.2		6.2	157.5	6.2	157.5	7.4	188.0	7.4	188.0	7.4	188.0	8.8	223.5	8.8	223.5	10.5	266.7
2	.875	5.2	132.1	6.2	157.5	7.4	188.0	7.4	188.0	8.8	223.5	8.8	223.5	8.8	223.5	10.5	266.7	10.5	266.7
2	.938	5.2		7.4	188.0	7.4	188.0	8.8	223.5	8.8	223.5	8.8	223.5	8.8	223.5	10.5	266.7	12.6	320.0
2	1.000	6.2	157.5	7.4	188.0	8.8	223.5	8.8	223.5	8.8	223.5	10.5	266.7	10.5	266.7	10.5	266.7	12.6	320.0
2	1.062	6.2		8.8	223.5	8.8	223.5	8.8	223.5	10.5	266.7	10.5	266.7	10.5	266.7	12.6	320.0	15.1	383.5

API SPECIFICATION 5L

Will	E	6		(3)		(4)		(5)		(9)		(<u>1</u>)	Ċ	(8)	-	(6)	Ξ	(10)		(11)
N. Condex I C										Din	nension A									1
n. in min	0 ine	Thickness	1	de A	Grades		ĸ	K 46	×	52	x	56	×	.09	×	(65	×	70		(80
74 1880 188 2235 105 2667 105	signatio	n r(in.)	•	E	i.	uu	in.	mm	. E	шш	ij.	mm		шш	in.	mm	. <u></u>	шш	ii.	mm
118 74 188 74 189 05 2667 105 2667 126 2000 126 2000 151 3835 181 1290 74 180 05 2667 105 2667 126 2000 126 2000 151 3835 181 - 260 21 780 24 1118 24 1118 24 1118 25 1321 62 1755 74 1835 74 260 31 780 34 1118 22 1321 62 175 62 175 74 1885 74 118 52 175 74 1880 74 1880 74 1880 74 1880 74 1880 74 1880 74 1880 74 1880 74 1880 74 1880 74 1880 74 1880 74 1880 74 1880 74 1880	2	1.125	7.4	188.0	8.8	223.5	8.8	223.5	10.5	266.7	10.5	266.7	10.5	266.7	12.6	320.0	12.6	320.0	15.1	383.5
129 74 180 105 2667 105 2667 105 2667 126 200 126 200 131 353 131 354 1118 444 1118 444 1118 444 1118 444 1118 444 1118 521 133 744 138 744 1118 521 133 744 1188 744 1118 521 133 521 133 521 133 521 133 734 138	2	1.188	7.4	188.0	8.8	223.5	10.5	266.7	10.5	266.7	12.6	320.0	12.6	320.0	12.6	320.0	15.1	383.5	18.1	459.7
460 26 600 31 7x1 340 54 1118 54 1118 52 1321 52 1321 52 1321 52 1321 52 1321 52 1321 52 1321 52 1321 52 1321 52 1321 52 1321 52 1321 52 1321 52 1575 74 118 52 1575 74 180	2	1.250	7.4	188.0	10.5	266.7	10.5	266.7	10.5	266.7	12.6	320.0	12.6	320.0	12.6	320.0	15.1	383.5	18.1	459.7
500 26 600 37 940 37 940 44 1118 44 1118 52 1321 52 1321 52 1321 52 1321 52 1321 52 1321 52 1321 52 1321 52 1321 52 1321 52 1321 52 1321 52 1321 52 1321 52 1321 52 1323 52 1323 52 1323 52 1375 62 1375 74 1880	89	469	2.6	66.0	3.1	78.7	3.7	94.0	3.7	94.0	4.4	111.8	4.4	111.8	4.4	111.8 -	4.4	111.8	5.2	132.1
562 31 78.7 44 1118 47 111.8 52 132.1 52 132.1 52 137.5 62 174 188.0 74 188.0 74 188.0 74 188.0 74 188.0 74 188.0 74 188.0 74 188.0 74 188.0 74 188.0 74 188.0 74 <td>. 39</td> <td>500</td> <td>2.6</td> <td>66.0</td> <td>3.7</td> <td>94.0</td> <td>3.7</td> <td>94.0</td> <td>3.7</td> <td>94.0</td> <td>4.4</td> <td>111.8</td> <td>4.4</td> <td>111.8</td> <td>4.4</td> <td>111.8</td> <td>5.2</td> <td>132.1</td> <td>6.2</td> <td>157.5</td>	. 39	500	2.6	66.0	3.7	94.0	3.7	94.0	3.7	94.0	4.4	111.8	4.4	111.8	4.4	111.8	5.2	132.1	6.2	157.5
653 37 940 44 11.8 52 1321 52 1325 163 74 1880 74	88	562	3.1	78.7	4.4	111.8	4 4	111.8	4.4	111.8	5.2	132.1	5.2	132.1	5.2	132.1	6.2	157.5	7.4	188.0
688 3.7 940 5.2 1371 6.2 1375 6.2 1375 6.2 1375 7.4 1880	68	.625	3.7	94.0	4.4	8.111	5.2	132.1	5.2	132.1	5.2	132.1	6.2	157.5	6.2	157.5	6.2	157.5	7.4	188.0
750 44 111.8 52 137.1 62 157.5 74 188.0 74 111.8 74 111.8 74 111.8 74 111.8 74 111.8 74 111.8 74 111.8 74 111.8 74 111.8 74 111.8 74 118.	89	.688	3.7	94.0	5.2	132.1	5.2	132.1	6.2	157.5	6.2	157.5	6.2	157.5	6.2	157.5	7.4	188.0	8.8	223.5
812 52 1321 62 1575 74 1880 75 2667 105 2667 105 2667 105 2667 105 2667 105 2667 105 2667 105 2667 105 2667 105 2667 105 2667 105 2667 105 2667 105 2667 105 2667 105 2667 105 2667 105	68	.750	4.4	111.8	5.2	132.1	6.2	157.5	6.2	157.5	6.2	157.5	7.4	188.0	7.4	188.0	7.4	188.0	8.8	223.5
875 52 132.1 62 175 74 1880 74 1880 74 1880 74 1880 74 1880 74 1880 74 1880 74 1880 74 1880 74 1880 74 1880 74 1880 74 1880 74 1880 74 1880 74 1880 88 2235 105 2667 105 2667 105 2667 126 3200 151 1,118 7.4 1880 8.8 2235 105 2667 105 2667 105 2667 126 3200 151 1,118 7.4 1880 8.8 2235 105 2667 105 2667 126 3200 151 1,118 7.4 1880 7.4 1880 7.4 1118 5.2 1321 5.2 1321 6.2 1375 6.2 1375 6.2 1375 6.2 1375<	89	.812	5.2	132.1	6.2	157.5	6.2	157.5	7.4	188.0	7.4	188.0	7.4	188.0	7.4	188.0	8.8	223.5	10.5	266.7
938 52 1321 74 1880 74 1880 74 1880 74 1880 74 1880 74 1880 74 1880 74 1880 74 1880 74 1880 74 1880 74 1880 74 1880 74 1880 73 2657 105 2667 126 2000 151 1.1188 7.4 1880 88 2235 105 2667 105 2667 126 3000 151 3000 151 1.1188 7.4 1880 88 2235 105 2667 105 2667 126 3000 151 3030 151 1.1188 7.4 1118 4.4 111.8 52 1321 52 1321 62 1375 64 136 74 188 74 111.8 44 111.8 52 1321 62 1375 74 188 74 111.8	89	.875	5.2	132.1	6.2	157.5	7.4	188.0	7.4	188.0	7.4	188.0	8.8	223.5	8.8	223.5	8.8	223.5	10.5	266.7
1000 62 1575 74 1880 74 1880 8 2235 88 2235 105 2667 105 2667 105 2667 126 2000 151 1.1185 74 1880 88 2235 105 2667 151 833 81 111 84 1118 84 1118 52 1321 52 1321 52 1321 52 1321 52 1321 52 1321 62 1	88	.938	5.2	132.1	7.4	188.0	7.4	188.0	7.4	188.0	8.8	223.5	8.8	223.5	8.8	223.5	10.5	266.7	12.6	320.0
	89	1.000	6.2	157.5	7.4	188.0	7.4	188.0	8.8	223.5	8.8	223.5	10.5	266.7	10.5	266.7	10.5	266.7	12.6	320.0
	89	1.062	6.2	157.5	8.8	223.5	8.8	223.5	8.8	223.5	10.5	266.7	10.5	266.7	10.5	266.7	12.6	320.0	15.1	383.5
	68	1.125	7.4	188.0	8.8	223.5	8.8	223.5	10.5	266.7	10.5	266.7	10.5	266.7	12.6	320.0	12.6	320.0	15.1	383.5
	68	1.188	7.4	188.0	8.8	223.5	10.5	266.7	10.5	266.7	10.5	266.7	12.6	320.0	12.6	320.0	12.6	320.0	15.1	383.5
500 26 660 37 940 37 940 37 940 37 940 37 940 37 940 37 940 37 940 37 940 37 940 37 940 37 940 44 111.8 52 132.1 52 132.1 52 132.1 52 137.5 62 157.5 62 157.5 62 157.5 62 157.5 62 157.5 62 157.5 62 157.5 62 157.5 62 157.5 62 157.5 62 157.5 74 1880 74 1880 74 1880 74 1880 74 1880 74 1880 74 1880 74 1880 74 1880 74 1880 74 1880 74 1880 74 1880 74 1880 74 1880 74 1880 74 1880 74 1880 74 1880<	68	1.250	7.4	188.0	10.5	266.7	10.5	266.7	10.5	266.7	12.6	320.0	12.6	320.0	12.6	320.0	15.1	383.5	18.1	459.7
562 31 787 44 111.8 44 111.8 52 132.1 52 132.1 52 137.1 62 157.5 62 157.5 62 157.5 62 157.5 62 157.5 62 157.5 62 157.5 62 157.5 62 157.5 62 157.5 62 157.5 62 157.5 62 157.5 62 157.5 62 157.5 62 157.5 62 157.5 62 157.5 74 1880 74 1880 74 1880 74 1880 74 1880 74 1880 74 1880 74 1880 74 1880 74 1880 74 1880 74 1880 74 1880 74 1880 74 1880 74 1880 74 1880 74 1880 74 1880 75 162 157.5 105 105 105 105 105 105 </td <td>72</td> <td>500</td> <td>2.6</td> <td>66.0</td> <td>3.7</td> <td>94.0</td> <td>3.7</td> <td>94.0</td> <td>3.7</td> <td>94.0</td> <td>4.4</td> <td>111.8</td> <td>4.4</td> <td>111.8</td> <td>4.4</td> <td>111.8</td> <td>5.2</td> <td>132.1</td> <td>6.2</td> <td>157.5</td>	72	500	2.6	66.0	3.7	94.0	3.7	94.0	3.7	94.0	4.4	111.8	4.4	111.8	4.4	111.8	5.2	132.1	6.2	157.5
625 37 940 44 111.8 5.2 132.1 5.2 132.1 5.2 132.1 5.2 132.1 5.2 137.5 6.2 157.5 6.2 157.5 7.4 188.0	72	.562	3.1	78.7	4.4	111.8	4.4	111.8	4.4	111.8	5.2	132.1	5.2	132.1	5.2	132.1	6.2	157.5	6.2	157.5
688 37 940 52 1321 52 1321 52 1321 52 1321 52 1375 62 1575 62 1575 74 1880 74 1880 78 3750 44 1118 52 1321 62 1575 62 1575 74 1880 767 105 2667	22	.625	3.7	94.0	4.4	111.8	4.4	111.8	5.2	132.1	5.2	132.1	6.2	157.5	6.2	157.5	6.2	157.5	7.4	188.0
750 44 1118 5.2 157.5 6.2 157.5 6.2 157.5 6.2 157.5 7.4 188.0 <t< td=""><td>12</td><td>.688</td><td>3.7</td><td>94.0</td><td>5.2</td><td>132.1</td><td>5.2</td><td>132.1</td><td>.5.2</td><td>132.1</td><td>6.2</td><td>157.5</td><td>6.2</td><td>157.5</td><td>6.2</td><td>157.5</td><td>7.4</td><td>188.0</td><td>8.8</td><td>223.5</td></t<>	12	.688	3.7	94.0	5.2	132.1	5.2	132.1	.5.2	132.1	6.2	157.5	6.2	157.5	6.2	157.5	7.4	188.0	8.8	223.5
812 44 111.8 6.2 157.5 6.2 157.5 7.4 188.0 7.5 266.7 10.5 266.7 10.5 266.7 10.5 266.7	72	.750	4.4	111.8	5.2	132.1	6.2	157.5	6.2	157.5	6.2	157.5	7.4	188.0	7.4	188.0	7.4	188.0	8.8	223.5
875 5.2 132.1 6.2 157.5 7.4 188.0 7.4 188.0 7.4 188.0 7.4 188.0 7.4 188.0 7.4 188.0 7.4 188.0 7.4 188.0 7.4 188.0 7.4 188.0 7.4 188.0 7.4 188.0 7.4 188.0 7.4 188.0 7.4 188.0 7.4 188.0 7.4 188.0 7.4 188.0 7.4 188.0 8.8 223.5 8.8 223.5 10.5 266.7 10.5 266.7 10.5 266.7 12.6 320.0 15.1 1.002 6.2 157.5 8.8 223.5 10.5 266.7 10.5 266.7 10.5 266.7 12.6 320.0 15.1 1.125 7.4 188.0 7.4 188.0 8.8 223.5 10.5 266.7 10.5 266.7 12.6 320.0 15.1 1.188 7.4 188.0 8.8 223.5 10.5 266.7 10.5 266.7 12.6 320.0 15.1 16.6 32	22	.812	4.4	111.8	6.2	157.5	6.2	157.5	7.4	188.0	7.4	188.0	7.4	188.0	7.4	188.0	8.8	223.5	10.5	266.7
938 5.2 132.1 7.4 188.0 7.4 188.0 7.4 188.0 7.4 188.0 7.4 188.0 7.4 188.0 7.4 188.0 7.4 188.0 7.4 188.0 7.4 188.0 7.4 188.0 7.4 188.0 7.4 188.0 7.4 188.0 7.4 188.0 8.8 223.5 8.8 223.5 10.5 266.7 10.5 266.7 10.5 266.7 12.6 320.0 15.1 1.125 7.4 188.0 8.8 223.5 10.5 266.7 10.5 266.7 10.5 266.7 12.6 320.0 15.1 1.125 7.4 188.0 8.8 223.5 10.5 266.7 10.5 266.7 12.6 320.0 15.1 1.188 7.4 188.0 8.8 223.5 10.5 266.7 10.5 266.7 12.6 320.0 15.1 1.250 7.4 188.0 8.8	72	.875	5.2	132.1	6.2	157.5	7.4	188.0	7.4	188.0	7.4	188.0	8.8	223.5	8.8	223.5	8.8	223.5	10.5	266.7
1.000 6.2 157.5 7.4 188.0 7.4 188.0 8.8 223.5 8.8 223.5 10.5 266.7 10.5 266.7 10.5 266.7 12.6 320.0 15.1 1.062 6.2 157.5 8.8 223.5 8.8 223.5 10.5 266.7 10.5 266.7 12.6 320.0 15.1 1.125 7.4 188.0 8.8 233.5 10.5 266.7 10.5 266.7 12.6 320.0 15.1 320.0 15.1 1.188 7.4 188.0 8.8 233.5 10.5 266.7 10.5 266.7 12.6 320.0 15.1 1.188 7.4 188.0 0.5 266.7 10.5 266.7 12.6 320.0 15.1 33.5 18.1 1.250 7.4 188.0 3.7 94.0 3.7 94.0 12.6 320.0 12.6 320.0 15.1 6.2 15.7 6.2	72	938	5.2	132.1	7.4	188.0	7.4	188.0	7.4	188.0	8.8	223.5	8.8	223.5	8.8	223.5	10.5	266.7	12.6	320.0
1.062 6.2 157.5 8.8 223.5 8.8 223.5 8.8 223.5 10.5 266.7 10.5 266.7 12.6 320.0 15.1 1.125 7.4 188.0 8.8 233.5 10.5 266.7 10.5 266.7 12.6 320.0 15.1 1.188 7.4 188.0 8.8 233.5 10.5 266.7 10.5 266.7 12.6 320.0 12.6 320.0 15.1 1.188 7.4 188.0 10.5 266.7 10.5 266.7 12.6 320.0 12.6 320.0 15.1 1.260 7.4 188.0 10.5 266.7 10.5 266.7 12.6 320.0 15.1 333.5 181 1.260 3.7 94.0 3.7 94.0 3.7 94.0 3.7 94.0 11.8 5.2 132.1 5.2 132.1 5.2 137.1 5.2 137.1 5.2 157.5 6.2	72	1.000	6.2	157.5	7.4	188.0	7.4	188.0	8.8 9	223.5	8.8	223.5	10.5	266.7	10.5	266.7	10.5	266.7	12.6	320.0
1125 7.4 188.0 8.8 233.5 10.5 266.7 10.5 266.7 10.5 266.7 12.6 320.0 12.6 320.0 15.1 1.188 7.4 188.0 8.8 223.5 10.5 266.7 10.5 266.7 12.6 320.0 12.6 320.0 15.1 1.260 7.4 188.0 10.5 266.7 10.5 266.7 12.6 320.0 12.6 320.0 15.1 333.5 18.1 1.250 7.4 188.0 10.5 266.7 10.5 266.7 12.6 320.0 12.6 320.0 15.1 333.5 18.1 1.260 2.6 3.7 94.0 3.7 94.0 11.18 4.4 11.18 5.2 132.1 5.2 132.1 5.2 132.1 5.2 132.1 5.2 137.1 5.2 157.5 6.2 157.5 6.2 157.5 6.2 157.5 5.2 57.5 5.7 5.4 5.4 5.4 5.4 5.4 5.4 5.5 5.5 5.7	72	1.062	6.2	157.5	8.8	223.5	8.8	223.5	8.8	223.5	10.5	266.7	10.5	266.7	10.5	266.7	12.6	320.0	15.1	383.5
1.188 7.4 188.0 8.8 223.5 10.5 266.7 10.5 266.7 10.5 266.7 12.6 320.0 12.6 320.0 12.6 320.0 15.1 383.5 18.1 1.250 7.4 188.0 10.5 266.7 10.5 266.7 12.6 320.0 12.6 320.0 15.1 383.5 18.1 .500 2.6 66.0 3.7 94.0 3.7 94.0 3.7 94.0 4.4 111.8 4.4 111.8 5.2 132.1 5.2 132.1 5.2 132.1 6.2 157.5 6.2 157.5 6.2 157.5 6.2 157.5 6.2 157.5 6.2 157.5 5.2 7.4 .500 5.2 132.1 5.2 132.1 5.2 132.1 5.2 132.1 5.2 132.1 5.2 157.5 6.2 157.5 6.2 157.5 5.7 7.4 .500 5.2 132.1 5.2 132.1 5.2 132.1 5.2 132.1 5.2 132.1	12	1.125	1,4	188.0	8.8	233.5	8.8	233.5	10.5	266.7	10.5	266.7	10.5	266.7	12.6	320.0	12.6	320.0	15.1	383.5
1250 7.4 188.0 10.5 266.7 10.5 266.7 12.6 320.0 12.6 320.0 15.1 383.5 18.1 500 2.6 66.0 3.7 94.0 3.7 94.0 3.7 94.0 3.7 94.0 3.7 94.0 3.7 94.0 3.7 94.0 3.7 94.0 3.7 94.0 3.7 94.0 3.7 94.0 3.7 94.0 3.7 94.0 3.7 94.0 3.7 94.0 3.2 132.1 5.2 132.1 5.2 132.1 6.2 157.5 6.2 157.5 6.2 157.5 6.2 157.5 6.2 157.5 6.2 157.5 7.4 188.0 8.8 568 3.7 94.0 5.2 132.1 5.2 132.1 5.2 157.5 6.2 157.5 6.2 157.5 7.4 188.0 8.8 568 3.7 94.0 5.2 132.1 5.2 132.1 5.2 157.5 6.2 157.5 7.4 188.0 8.8 <td>2</td> <td>1.188</td> <td>7.4</td> <td>188.0</td> <td>8.8</td> <td>223.5</td> <td>10.5</td> <td>266.7</td> <td>10.5</td> <td>266.7</td> <td>10.5</td> <td>266.7</td> <td>12.6</td> <td>320.0</td> <td>12.6</td> <td>320.0</td> <td>12.6</td> <td>320.0</td> <td>15.1</td> <td>383.5</td>	2	1.188	7.4	188.0	8.8	223.5	10.5	266.7	10.5	266.7	10.5	266.7	12.6	320.0	12.6	320.0	12.6	320.0	15.1	383.5
500 2.6 66.0 3.7 94.0 3.7 94.0 3.7 94.0 3.7 94.0 4.4 111.8 4.4 111.8 5.2 132.1 6.2 562 3.1 78.7 4.4 111.8 4.4 111.8 5.2 132.1 5.2 132.1 5.2 5.2 5.7.5 6.2 57.5 6.2 57.5 6.2 57.5 6.2 57.5 6.2 57.5 5.2 5.4 5.4 5.4 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.7.5 5.2 5.7.5 5.2 5.7.5 5.2 5.7.5 5.2 5.7.5 5.7 5.7 5.7 5.7 5.7 5.7.5 5.7 5.7.5 5.7 5.7.5 5.7 5.7.5 5.7 5.7.5 5.7 5.7.5 5.7 5.7.5 5.7 5.7.5 5.7.5 5.7.5 5.7.5 5.7.5 5.7.5 7.4 5.8.0 5.8.8 5.7 5.7.5 5.7.5 5.7.5 5.7.5 5.7.5 7.4	2	1.250	7.4	188.0	10.5	266.7	10.5	266.7	10.5	266.7	12.6	320.0	12.6	320.0	12.6	320.0	15.1	383.5	18.1	459.7
562 3.1 78.7 4.4 111.8 4.4 111.8 4.4 111.8 5.2 132.1 5.2 132.1 5.2 132.1 5.2 5.2 5.2 625 3.7 94.0 4.4 111.8 5.2 132.1 5.2 137.1 6.2 157.5 6.2 157.5 5.4 688 3.7 94.0 5.2 132.1 5.2 132.1 6.2 157.5 6.2 157.5 6.2 157.5 7.4 688 3.7 94.0 5.2 132.1 5.2 132.1 6.2 157.5 6.2 157.5 7.4	76	500	2.6	66.0	3.7	94.0	3.7	94.0	3.7	94.0	4.4	111.8	4.4	111.8	4.4	111.8	5.2	132.1	6.2	157.5
	76	562	3.1	78.7	4.4	111.8	4.4	111.8	4.4	111.8	5.2	132.1	5.2	132.1	5.2	132.1	6.2	157.5	6.2	157.5
	292	529	3.7	94.0	4.4	111.8	4,4	111.8	5.2	132.1	5.2	132.1	6.2	157.5	6.2	157.5	6.2	157.5	7.4	188.0
	2 22	889	3.7	94.0	5.2	132.1	5.2	132.1	5.2	132.1	6.2	157.5	6.2	157.5	6.2	157.5	7.4	188.0	8.8	223.5

SPECIFICATION FOR LINE PIPE

_ _

111

-- - -

		(E)	÷	(7)		(2)	-	(9)		E		(8)		(6)	=	(10)		(11)
.									Dimension A	A								
Wall Thickness.		Grade A	Grades B	B & X42		X46	×	X52		X56		X60	×	X65	×	X70	Î	X80
Designation t (in.)	ij.	mm	in.	mm	.Ħ	mm	i.	ШШ	ij.	աա	ji.	mm	. <u>.</u>	шш	ii.	ШШ	. <u></u>	mm
.750	4.4	111.8	5.2	132.1	6.2	157.5	6.2	157.5	6.2	157.5	7.4	188.0	7.4	188.0	7.4	188.0	8.8	223.5
.812	4.4	111.8	6.2	157.5	6.2	157.5	6.2	157.5	7.4	188.0	7.4	188.0	7.4	188.0	8.8	223.5	10.5	266.7
.875	5.2	132.1	6.2	157.5	7.4	188.0	7.4	188.0	7.4	188.0	8.8	223.5	8.8	223.5	8.8	223.5	10.5	266.7
938	5.2	132.1	7.4	188.0	7.4	188.0	7.4	188.0	8.8	223.5	8.8	223.5	8.8	223.5	10.5	266.7	12.6	320.0
000	6.2	157.5	7.4	188.0	7.4	188.0	8.8	223.5	8.8	223.5	10.5	266.7	10.5	266.7	10.5	266.7	12.6	320.0
.062	6.2	157.5	8.8	223.5	8.8	223.5	8.8	223.5	10.5	266.7	10.5	266.7	10.5	266.7	12.6	320.0	15.1	383.5
.125	6.2	157.5	80.00 80.00	223.5	8.8	223.5	10.5	266.7	10.5	266.7	10.5	266.7	10.5	266.7	12.6	320.0	15.1	383.5
1.188	7.4	188.0	8.8	223.5	10.5	266.7	10.5	266.7	10.5	266.7	12.6	320.0	12.6	320.0	12.6	320.0	15.1	383.5
1.250	7.4	188.0	10.5	266.7	10.5	266.7	10.5	266.7	12.6	320.0	12.6	320.0	12.6	320.0	15.1	383.5	18.1	459.7
.562	3.1	78.7	3.7	94.0	4.4	111.8	4.4	111.8	5.2	132.1	5.2	132.1	5.2	132.1	6.2	157.5	6.6	167.6
.625	3.7		4.4	111.8	4.4	111.8	5.2	132.1	5.2	132.1	6.2	157.5	6.2	157.5	6.2	157.5	7.4	188.0
.688	3.7	94.0	5.2	132.1	5.2	132.1	5.2	132.1	6.2	157.5	6.2	157.5	6.2	157.5	7.4	188.0	8.8	223.5
.750	4.4	111.8	5.2	132.1	6.2	157.5	6.2	157.5	6.2	157.5	7.4	188.0	7.4	188.0	7.4	188.0	8.8	223.5
.812	4.4	111.8	6.2	157.5	6.2	157.5	6.2	157.5	7,4	188.0	7.4	188.0	7.4	188.0	8.8	223.5	10.5	266.7
.875	5.2		6.2	157.5	7.4	188.0	7.4	0.881	7.4	188.0	8.8	223.5	8.8	223.5	8.8	223.5	10.5	266.7
.938	5.2	132.1	7.4	188.0	7.4	188.0	7.4	188.0	8.8	223.5	8.8	223.5	. 8.8	223.5	10.5	266.7	12.6	320.0
000.1	6.2		7.4	188.0	7.4	188.0	8.8	223.5	8.8	223.5	10.5	266.7	10.5	266.7	10.5	266.7	12.6	320.0
.062	6.2	157.5	7.4	188.0	8.8	223.5	8.8	223.5	10.5	266.7	10.5	266.7	10.5	266.7	12.6	320.0	12.6	320.0
.125	6.2	157.5	8.8	223.5	8.8	223.5	10.5	266.7	10.5	266.7	10.5	226.7	10.5	266.7	12.6	320.0	15.1	383.5
.188	7.4	188.0	8.8	223.5	8.8	223.5	10.5	266.7	10.5	266.7	12.6	320.0	12.6	320.0	12.6	320.0	15.1	383.5
.250	7.4	188.0	10.5	266.7	10.5	7667	10.5	7667	17.6	320.0	176	220.0		0000				

112

API SPECIFICATION 5L

-- ____

APPENDIX H-PURCHASER INSPECTION (NORMATIVE)

H.1 Inspection Notice

Where the inspector representing the purchaser desires to inspect pipe or witness tests, reasonable notice shall be given of the time at which the run is to be made.

H.2 Plant Access

The inspector representing the purchaser shall have unrestricted access, at all times while work on the contract of the purchaser is being performed, to all parts of the manufacturer's works that will concern the manufacture of the pipe ordered. The manufacturer shall afford the inspector all reasonable facilities to satisfy the inspector that the pipe is being manufactured in accordance with this specification. All inspections should be made at the place of manufacture prior to shipment, unless otherwise specified on the purchase order, and shall be so conducted as not to interfere unnecessarily with the operation of the works.

H.3 Compliance

The manufacturer is responsible for complying with all of the provisions of this specification. The purchaser may make any investigation necessary to assure compliance by the manufacturer and may reject any material that does not comply with this specification.

H.4 Rejection

Unless otherwise provided, material that shows defects on inspection or subsequent to acceptance at the manufacturer's works, or material that proves defective when properly applied in service, may be rejected and the manufacturer so notified. If tests that require the destruction of material are made, any product proven not to have met the requirements of the specification shall be rejected. Disposition of rejected product shall be a matter of agreement between the manufacturer and the purchaser.

APPENDIX I-MARKING INSTRUCTIONS FOR API LICENSEES (NORMATIVE)

I.1 General

The marking requirements in this appendix apply to licensed manufacturers using the API monogram on products covered by this specification.

Pipe and pipe couplings manufactured in conformance with this specification may be marked by the licensee as specified in Appendix I or Section 10. Products to which the monogram is applied shall be marked as specified in Appendix I.

1.1.1 The required marking on pipe shall be as stipulated hereinafter.

1.1.2 The required marking on couplings shall be die stamped unless otherwise agreed between the purchaser and the manufacturer, in which case they shall be paint stenciled.

1.1.3 Length and hydrostatic test pressure marking should be in U.S. customary units. If so specified on the purchase order, these markings shall be SI (metric) units or both U.S. customary and metric units. If not so specified, for pipe made and intended for use in countries using the metric system, these markings may be given in metric units only, at the option of the manufacturer.

Additional markings, including those for compatible standards following the specification marking, are allowed and may be applied as desired by the manufacturer or as requested by the purchaser.

I.2 Location of Markings

The location of identification markings shall be as specified in I.2.1-I.2.3.

I.2.1 SIZES 1¹/₂ AND SMALLER

The marking is die stamped on a metal tag fixed to the bundle or may be printed on the straps or banding clips used to tie the bundle.

1.2.2 SEAMLESS PIPE IN ALL OTHER SIZES AND WELDED PIPE UP TO SIZE 16

Paint stencil the marking on the outside surface starting at a point between 18 in. and 30 in. from the end of the pipe, and in the sequence shown in 1.2.3, except when agreed between the purchaser and the manufacturer, some or all of the markings may be placed on the inside surface in a sequence convenient to the manufacturer.

I.2.3 WELDED PIPE SIZES 16 AND LARGER

Paint stencil the inside surface starting at a point no less than 6 in. from the end of the pipe in a sequence convenient to the manufacturer, unless otherwise specified by the purchaser.

1.3 Sequence of Markings

The sequence of identification markings shall be as specified in 1.3.1-1.3.9.

1.3.1 MANUFACTURER'S API LICENSE NUMBER

The manufacturer's API license number shall be marked. (The manufacturer's name or mark is optional.)

1.3.2 API MONOGRAM (\mathcal{P}) AND DATE

The API monogram (\mathbf{P}) , immediately followed by the date of manufacture (defined as the month and year when the monogram is applied), shall be applied only to products complying with the requirements of the specification and only by authorized manufacturers.

I.3.3 COMPATIBLE STANDARDS

Products in compliance with multiple compatible standards may be marked with the name of each standard.

I.3.4 DESIGNATION

The size and weight designations are dimensionless quantities based on the former U.S. customary unit diameter and weight per foot. The size designation (column 1, Tables 4, 5, 6A, 6B, and 6C) or the applicable intermediate outside diameter shall be marked.

For sizes $4^{1}/_{2}$ and larger, the nominal weight for threadedand-coupled pipe (column 2, Tables 4 and 5), the tabulated weight for plain-end pipe (column 4, Tables 6A, 6B, and 6C), or the applicable calculated weight for pipe having an intermediate outside diameter and/or wall thickness, shall be marked.

1.3.5 GRADE AND CLASS

The symbols to be used are as follows:

Grade (See Note)	Symbol
· ,	-
Grade A25, Class I	A25
Grade A25, Class II	A25R
Grade A	Α
Grade B	В
Grade X42	X42
Grade X46	X46
Grade X52	X52
Grade X56	X56
Grade X60	X60
Grade X65	X65
Grade X70	X70
Grade X80	X80

Note: See 1.3 for limitations on downgrading.

For grades intermediate to X42 and X80, the symbol shall be X followed by the first two digits of the specified minimum yield strength.

By agreement between the purchaser and the manufacturer and when so specified on the purchase order, the grade shall be identified by color in accordance with SR3.

I.3.6 PROCESS OF MANUFACTURE

The symbols to be used are as follows:

a. Seamless pipe	S
b. Welded pipe, except continuous welded	Ε
c. Continuous welded pipe	F

1.3.7 HEAT TREATMENT

The symbols to be used are as follows:

a. Normalized or normalized and tem	pered HN
b. Subcritical stress relieved	HS
c. Subcritical age hardened	HA
d. Quenched and tempered	HQ

1.3.8 TEST PRESSURE

When the specified hydrostatic test pressure is higher than the tabulated pressure (Tables 4 and 5), the test pressure in pounds per square inch, preceded by the word TESTED, shall be marked.

I.3.9 SUPPLEMENTARY REQUIREMENTS

See Appendix F for supplemental requirements.

I.3.10 EXAMPLES

1. Size 14, weight 54.57, Grade B, seamless, regular-weight, plain-end pipe should be paint stenciled as follows:

5LXXXX.X 🌵 (MO-YR) 14 54.57 B S

2. Size $6^{5}/_{8}$, weight 18.97, Grade B, electric-welded, regular-weight, plain-end pipe should be paint stenciled as follows:

5LXXXX.X $(MO-YR) 6^{5}/_{8} 18.97 B E$

3. Nominal size 4, Grade A25 continuous welded, Class I, standard-weight, threaded line pipe should be paint stenciled as follows:

5LXXXX.X 🌵 (MO-YR) 4 11.00 A25 F

4. Size 14, weight 54.57, Grade X70, seamless, quenchedand-tempered steel pipe should be paint stenciled as follows:

5LXXXX.X **P** (MO-YR) 14 54.57 X70 S HQ

5. Size $12^{3}/_{4}$, weight 43.77, Grade X42, seamless plain-end pipe should be paint stenciled as follows:

5LXXXX.X 🌵 (MO-YR) 12³/₄ 43.77 X42 S

6. Size $6^{5}/_{8}$, weight 14.97, Grade X42, electric-welded plainend pipe should be paint stenciled as follows:

5LXXXX.X **P** (MO-YR) 6⁵/₈ 14.97 X42 E

7. Size $12^{3}/_{4}$, weight 43.77, Grade X42, helical seam submerged-arc welded plain-end pipe should be paint stenciled as follows:

5LXXXX.X $\mathbf{\Phi}$ (MO-YR) 12³/₄ 43.77 X42 E

I.4 Bundle Identification

For pipe sizes $1^{1}/_{2}$ and smaller, the identification markings specified in I.3 shall be placed on the tag, strap, or clip used to tie the bundle. For example, size $1^{1}/_{2}$, weight 2.72, Grade B, electric-welded plain-end pipe should have the following marking:

5LXXXX.X **P** (MO-YR) 1¹/₂ 2.72 BE

I.5 Length

In addition to the identification markings stipulated in I.2, I.3, and I.4, the length shall be marked as follows:

a. For pipe sizes larger than $1^{1}/_{2}$, the length in feet and tenths of a foot (unless otherwise specified on the purchase order) as measured on the finished pipe shall be paint stenciled on the outside surface at a location convenient to the manufacturer, except by agreement between the purchaser and the manufacturer, the length marking may be placed inside the pipe at a convenient location.

b. For pipe sizes $1^{1}/_{2}$ and smaller, the total length of pipe in the bundle in feet and tenths of a foot (unless otherwise specified on the purchase order) shall be marked on the tag, band, or clip.

I.6 Couplings

All couplings in nominal sizes 2 and larger shall be identified with the manufacturer's name or mark and the API monogram ($\mathbf{\Phi}$), immediately followed by the date of manufacture (defined as the month and year when the monogram is applied).

I.7 Die Stamping

Cold-die stamping of grades higher than A25 plate or pipe not subsequently heat treated and all pipe with wall thicknesses of 0.156 in. (4.0 mm) and less is prohibited, except that by agreement between the purchaser and the manufacturer and when so specified on the purchase order, pipe or plate may be cold-die stamped. The manufacturer at his option may hot-die stamp (200°F or higher) plate or pipe, colddie stamp plate or pipe if it is subsequently heat treated, and cold-die stamp couplings. Cold-die stamping shall be done with rounded or blunt dies. All die stamping shall be at least 1 in. (25.4 mm) from the weld for all grades except Grade A25.

I.8 Thread Identification

At the manufacturer's option, any pipe threads that conform to the threading and gauging stipulations given in API Standard 5B may be identified by stamping or stenciling the product adjacent to such thread with the threader's API license number, the size, the API monogram ($\frac{1}{P}$), immediately followed by the date of threading (defined as the month and year the monogram is applied) and "LP" to indicate the type of thread. The thread marking may be applied to products that do or do not bear the API monogram. For example, nominal size 6 API line pipe threads may be marked as follows:

 $5LXXXX.X \quad \mathbf{P}$ (MO-YR of threading) 6 LP

If the product is clearly marked elsewhere with the manufacturer's identification, his license number, as above, may be omitted.

I.9 Thread Certification

The use of the monogram ($\mathbf{\Phi}$) as provided in I.8 shall constitute a certification by the manufacturer that the threads so marked comply with the requirements stipulated in the latest edition of API Standard 5B but should not be construed by the purchaser as a representation that the product so marked is, in its entirety, in accordance with any API specification. Manufacturers who use the monogram ($\mathbf{\Phi}$) for thread identification must have access to properly certified API reference master pipe gauges.

I.10 Pipe Processor Markings

Pipe heat treated by a processor other than the original pipe manufacturer shall be marked as stipulated in I.1, I.2, I.3, I.4, I.5, I.6, and I.7. The processor shall remove any identification that is not indicative of a new condition of the product as a result of heat treating (such as, prior grade and original pipe manufacturer's name or logo).

APPENDIX J—METRIC (SI) UNIT CONVERSIONS AND ROUNDING PROCEDURES (NORMATIVE)

J.1 Rounding of Metric Units

Outside diameters and wall thicknesses are converted from inch dimensions. The converted diameters are rounded to the nearest 0.1 mm for diameters less than 18 in. (457 mm) and to the nearest 1.0 mm for diameters 18 in. (457 mm) and larger.

Wall thicknesses are rounded to the nearest 0.1 mm.

Metric inside diameters are calculated from the metric outside diameters and wall thicknesses and rounded to the nearest 0.1 mm.

Metric plain-end weights are calculated from the metric outside diameters and wall thicknesses by the following equation and rounded to the nearest 0.01 kilograms per meter (kg/m):

$w_{pe} = 0.02466 (D-t)t$

Metric hydrostatic pressures are calculated from the metric outside diameters and wall thicknesses and metric fiber stresses shown in 9.4.

J.2 Metric Conversion Factors

The factors used where conversions are appropriate are as follows:

U.S. Customary Unit	SI Unit
l inch (in.)	= 25.4 millimeters (mm) exactly
l square inch (sq. in) exactly	= 645.16 square millimeters (mm ²)
l foot (ft)	= 0.3048 meters (m) exactly
1 pound (lb)	= 0.45359 kilograms (kg)
1 pound per foot	= 1.4882 kilograms per meter (kg/m)
1 pound per square inch (psi)	= 6.895 kilopascals (kPa) for pressure
	= 0.006895 megapascals (MPa) for stress
1 foot-pound (ft-lb)	= 1.3558 joules (J) for impact energy

The following equation was used to convert degrees Fahrenheit (°F) to degrees Celsius (°C):

$$^{\circ}C = \frac{5}{9} (^{\circ}F - 32)$$

1-01200—4/95—8M ()

- - - - - - --

ADDITIONAL COPIES AVAILABLE FROM PUBLICATIONS AND DISTRIBUTION (202) 682-8375

American Petroleum Institute 1220 L Street, Northwest Washington, D.C. 20005

Order No. 811-05L41

- -
